1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
#[cfg(feature = "decimal")] use decimal::d128; use num::Num; use num_complex::Complex; use std::ops::{Add, Mul}; use approx::RelativeEq; use crate::general::{Additive, ClosedNeg, Identity, Multiplicative, Operator, TwoSidedInverse}; /// A magma is an algebraic structure which consists of a set equipped with a binary operation, ∘, /// which must be closed. /// /// # Closed binary operation /// /// ~~~notrust /// a, b ∈ Self ⇒ a ∘ b ∈ Self /// ~~~ pub trait AbstractMagma<O: Operator>: Sized + Clone { /// Performs an operation. fn operate(&self, right: &Self) -> Self; /// Performs specific operation. #[inline] fn op(&self, _: O, lhs: &Self) -> Self { self.operate(lhs) } } /// A quasigroup is a magma which that has the **divisibility property** (or Latin square property). /// *A set with a closed binary operation with the divisibility property.* /// /// Divisibility is a weak form of right and left invertibility. /// /// # Divisibility or Latin square property /// /// ```notrust /// ∀ a, b ∈ Self, ∃! r, l ∈ Self such that l ∘ a = b and a ∘ r = b /// ``` /// /// The solution to these equations can be written as /// /// ```notrust /// r = a \ b and l = b / a /// ``` /// /// where "\" and "/" are respectively the **left** and **right** division. pub trait AbstractQuasigroup<O: Operator>: PartialEq + AbstractMagma<O> + TwoSidedInverse<O> { /// Returns `true` if latin squareness holds for the given arguments. Approximate /// equality is used for verifications. /// /// ```notrust /// a ~= a / b ∘ b && a ~= a ∘ b / b /// ``` fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where Self: RelativeEq, { let (a, b) = args; relative_eq!(a, a.operate(&b.two_sided_inverse()).operate(&b)) && relative_eq!(a, a.operate(&b.operate(&b.two_sided_inverse()))) // TODO: pseudo inverse? } /// Returns `true` if latin squareness holds for the given arguments. /// /// ```notrust /// a == a / b * b && a == a * b / b /// ``` fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where Self: Eq, { let (a, b) = args; a == a.operate(&b.two_sided_inverse()).operate(&b) && a == a.operate(&b.operate(&b.two_sided_inverse())) // TODO: pseudo inverse? } } /// Implements the quasigroup trait for types provided. /// # Examples /// /// ``` /// # #[macro_use] /// # extern crate alga; /// # use alga::general::{AbstractMagma, AbstractQuasigroup, Additive, TwoSidedInverse}; /// # fn main() {} /// #[derive(PartialEq, Clone)] /// struct Wrapper<T>(T); /// /// impl<T: AbstractMagma<Additive>> AbstractMagma<Additive> for Wrapper<T> { /// fn operate(&self, right: &Self) -> Self { /// Wrapper(self.0.operate(&right.0)) /// } /// } /// /// impl<T: TwoSidedInverse<Additive>> TwoSidedInverse<Additive> for Wrapper<T> { /// fn two_sided_inverse(&self) -> Self { /// Wrapper(self.0.two_sided_inverse()) /// } /// } /// /// impl_quasigroup!(<Additive> for Wrapper<T> where T: AbstractQuasigroup<Additive>); /// ``` macro_rules! impl_quasigroup( (<$M:ty> for $($T:tt)+) => { impl_marker!($crate::general::AbstractQuasigroup<$M>; $($T)+); } ); /// A semigroup is a quasigroup that is **associative**. /// /// *A semigroup is a set equipped with a closed associative binary operation and that has the divisibility property.* /// /// # Associativity /// /// ~~~notrust /// ∀ a, b, c ∈ Self, (a ∘ b) ∘ c = a ∘ (b ∘ c) /// ~~~ pub trait AbstractSemigroup<O: Operator>: PartialEq + AbstractMagma<O> { /// Returns `true` if associativity holds for the given arguments. Approximate equality is used /// for verifications. fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where Self: RelativeEq, { let (a, b, c) = args; relative_eq!(a.operate(&b).operate(&c), a.operate(&b.operate(&c))) } /// Returns `true` if associativity holds for the given arguments. fn prop_is_associative(args: (Self, Self, Self)) -> bool where Self: Eq, { let (a, b, c) = args; a.operate(&b).operate(&c) == a.operate(&b.operate(&c)) } } /// Implements the semigroup trait for types provided. /// # Examples /// /// ``` /// # #[macro_use] /// # extern crate alga; /// # use alga::general::{AbstractMagma, AbstractSemigroup, Additive}; /// # fn main() {} /// #[derive(PartialEq, Clone)] /// struct Wrapper<T>(T); /// /// impl<T: AbstractMagma<Additive>> AbstractMagma<Additive> for Wrapper<T> { /// fn operate(&self, right: &Self) -> Self { /// Wrapper(self.0.operate(&right.0)) /// } /// } /// /// impl_semigroup!(<Additive> for Wrapper<T> where T: AbstractSemigroup<Additive>); /// ``` macro_rules! impl_semigroup( (<$M:ty> for $($T:tt)+) => { impl_marker!($crate::general::AbstractSemigroup<$M>; $($T)+); } ); /// A loop is a quasigroup with an unique **identity element**, e. /// /// *A set equipped with a closed binary operation possessing the divisibility property /// and a unique identity element.* /// /// # Identity element /// /// ~~~notrust /// ∃! e ∈ Self, ∀ a ∈ Self, ∃ r, l ∈ Self such that l ∘ a = a ∘ r = e. /// ~~~ /// /// The left inverse `r` and right inverse `l` are not required to be equal. /// /// This property follows from /// /// ~~~notrust /// ∀ a ∈ Self, ∃ e ∈ Self, such that e ∘ a = a ∘ e = a. /// ~~~ pub trait AbstractLoop<O: Operator>: AbstractQuasigroup<O> + Identity<O> {} /// Implements the loop trait for types provided. /// # Examples /// /// ``` /// # #[macro_use] /// # extern crate alga; /// # use alga::general::{AbstractMagma, AbstractLoop, Additive, TwoSidedInverse, Identity}; /// # fn main() {} /// #[derive(PartialEq, Clone)] /// struct Wrapper<T>(T); /// /// impl<T: AbstractMagma<Additive>> AbstractMagma<Additive> for Wrapper<T> { /// fn operate(&self, right: &Self) -> Self { /// Wrapper(self.0.operate(&right.0)) /// } /// } /// /// impl<T: TwoSidedInverse<Additive>> TwoSidedInverse<Additive> for Wrapper<T> { /// fn two_sided_inverse(&self) -> Self { /// Wrapper(self.0.two_sided_inverse()) /// } /// } /// /// impl<T: Identity<Additive>> Identity<Additive> for Wrapper<T> { /// fn identity() -> Self { /// Wrapper(T::identity()) /// } /// } /// /// impl_loop!(<Additive> for Wrapper<T> where T: AbstractLoop<Additive>); /// ``` macro_rules! impl_loop( (<$M:ty> for $($T:tt)+) => { impl_quasigroup!(<$M> for $($T)+); impl_marker!($crate::general::AbstractLoop<$M>; $($T)+); } ); /// A monoid is a semigroup equipped with an identity element, e. /// /// *A set equipped with a closed associative binary operation with the divisibility property and /// an identity element.* /// /// # Identity element /// /// ~~~notrust /// ∃ e ∈ Self, ∀ a ∈ Self, e ∘ a = a ∘ e = a /// ~~~ pub trait AbstractMonoid<O: Operator>: AbstractSemigroup<O> + Identity<O> { /// Checks whether operating with the identity element is a no-op for the given /// argument. Approximate equality is used for verifications. fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where Self: RelativeEq, { let (a,) = args; relative_eq!(a.operate(&Self::identity()), a) && relative_eq!(Self::identity().operate(&a), a) } /// Checks whether operating with the identity element is a no-op for the given /// argument. fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where Self: Eq, { let (a,) = args; a.operate(&Self::identity()) == a && Self::identity().operate(&a) == a } } /// Implements the monoid trait for types provided. /// # Examples /// /// ``` /// # #[macro_use] /// # extern crate alga; /// # use alga::general::{AbstractMagma, AbstractMonoid, Additive, Identity}; /// # fn main() {} /// #[derive(PartialEq, Clone)] /// struct Wrapper<T>(T); /// /// impl<T: AbstractMagma<Additive>> AbstractMagma<Additive> for Wrapper<T> { /// fn operate(&self, right: &Self) -> Self { /// Wrapper(self.0.operate(&right.0)) /// } /// } /// /// impl<T: Identity<Additive>> Identity<Additive> for Wrapper<T> { /// fn identity() -> Self { /// Wrapper(T::identity()) /// } /// } /// /// impl_monoid!(<Additive> for Wrapper<T> where T: AbstractMonoid<Additive>); /// ``` macro_rules! impl_monoid( (<$M:ty> for $($T:tt)+) => { impl_semigroup!(<$M> for $($T)+); impl_marker!($crate::general::AbstractMonoid<$M>; $($T)+); } ); /// A group is a loop and a monoid at the same time. /// /// *A groups is a set with a closed associative binary operation with the divisibility property and an identity element.* pub trait AbstractGroup<O: Operator>: AbstractLoop<O> + AbstractMonoid<O> {} /// Implements the group trait for types provided. /// # Examples /// /// ``` /// # #[macro_use] /// # extern crate alga; /// # use alga::general::{AbstractMagma, AbstractGroup, Additive, TwoSidedInverse, Identity}; /// # fn main() {} /// #[derive(PartialEq, Clone)] /// struct Wrapper<T>(T); /// /// impl<T: AbstractMagma<Additive>> AbstractMagma<Additive> for Wrapper<T> { /// fn operate(&self, right: &Self) -> Self { /// Wrapper(self.0.operate(&right.0)) /// } /// } /// /// impl<T: TwoSidedInverse<Additive>> TwoSidedInverse<Additive> for Wrapper<T> { /// fn two_sided_inverse(&self) -> Self { /// Wrapper(self.0.two_sided_inverse()) /// } /// } /// /// impl<T: Identity<Additive>> Identity<Additive> for Wrapper<T> { /// fn identity() -> Self { /// Wrapper(T::identity()) /// } /// } /// /// impl_group!(<Additive> for Wrapper<T> where T: AbstractGroup<Additive>); /// ``` macro_rules! impl_group( (<$M:ty> for $($T:tt)+) => { impl_monoid!(<$M> for $($T)+); impl_marker!($crate::general::AbstractQuasigroup<$M>; $($T)+); impl_marker!($crate::general::AbstractLoop<$M>; $($T)+); impl_marker!($crate::general::AbstractGroup<$M>; $($T)+); } ); /// An Abelian group is a **commutative** group. /// /// *An commutative group is a set with a closed commutative and associative binary operation with the divisibility property and an identity element.* /// /// # Commutativity /// /// ```notrust /// ∀ a, b ∈ Self, a ∘ b = b ∘ a /// ``` pub trait AbstractGroupAbelian<O: Operator>: AbstractGroup<O> { /// Returns `true` if the operator is commutative for the given argument tuple. Approximate /// equality is used for verifications. fn prop_is_commutative_approx(args: (Self, Self)) -> bool where Self: RelativeEq, { let (a, b) = args; relative_eq!(a.operate(&b), b.operate(&a)) } /// Returns `true` if the operator is commutative for the given argument tuple. fn prop_is_commutative(args: (Self, Self)) -> bool where Self: Eq, { let (a, b) = args; a.operate(&b) == b.operate(&a) } } /// Implements the Abelian group trait for types provided. /// # Examples /// /// ``` /// # #[macro_use] /// # extern crate alga; /// # use alga::general::{AbstractMagma, AbstractGroupAbelian, Additive, TwoSidedInverse, Identity}; /// # fn main() {} /// #[derive(PartialEq, Clone)] /// struct Wrapper<T>(T); /// /// impl<T: AbstractMagma<Additive>> AbstractMagma<Additive> for Wrapper<T> { /// fn operate(&self, right: &Self) -> Self { /// Wrapper(self.0.operate(&right.0)) /// } /// } /// /// impl<T: TwoSidedInverse<Additive>> TwoSidedInverse<Additive> for Wrapper<T> { /// fn two_sided_inverse(&self) -> Self { /// Wrapper(self.0.two_sided_inverse()) /// } /// } /// /// impl<T: Identity<Additive>> Identity<Additive> for Wrapper<T> { /// fn identity() -> Self { /// Wrapper(T::identity()) /// } /// } /// /// impl_abelian!(<Additive> for Wrapper<T> where T: AbstractGroupAbelian<Additive>); /// ``` macro_rules! impl_abelian( (<$M:ty> for $($T:tt)+) => { impl_group!(<$M> for $($T)+); impl_marker!($crate::general::AbstractGroupAbelian<$M>; $($T)+); } ); /* * * * Implementations. * * * */ macro_rules! impl_magma( ($M:ty; $op: ident; $($T:ty),* $(,)*) => { $(impl AbstractMagma<$M> for $T { #[inline] fn operate(&self, lhs: &Self) -> Self { self.$op(*lhs) } })* } ); impl_magma!(Additive; add; u8, u16, u32, u64, u128, usize, i8, i16, i32, i64, i128, isize, f32, f64); #[cfg(feature = "decimal")] impl_magma!(Additive; add; d128); impl_magma!(Multiplicative; mul; u8, u16, u32, u64, u128, usize, i8, i16, i32, i64, i128, isize, f32, f64); #[cfg(feature = "decimal")] impl_magma!(Multiplicative; mul; d128); impl_monoid!(<Additive> for u8; u16; u32; u64; u128; usize); impl_monoid!(<Multiplicative> for u8; u16; u32; u64; u128; usize); impl<N: AbstractMagma<Additive>> AbstractMagma<Additive> for Complex<N> { #[inline] fn operate(&self, lhs: &Self) -> Self { Complex { re: self.re.operate(&lhs.re), im: self.im.operate(&lhs.im), } } } impl<N: Num + Clone> AbstractMagma<Multiplicative> for Complex<N> { #[inline] fn operate(&self, lhs: &Self) -> Self { self * lhs } } impl_abelian!(<Multiplicative> for Complex<N> where N: Num + Clone + ClosedNeg); impl_abelian!(<Additive> for Complex<N> where N: AbstractGroupAbelian<Additive>);