1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
use approx::RelativeEq;
#[cfg(feature = "decimal")]
use decimal::d128;
use num::Num;
use num_complex::Complex;

use crate::general::wrapper::Wrapper as W;
use crate::general::{
    AbstractGroupAbelian, AbstractMonoid, Additive, ClosedNeg, Multiplicative, Operator,
};

/// A **ring** is the combination of an Abelian group and a multiplicative monoid structure.
///
/// A ring is equipped with:
///
/// * An abstract operator (usually the addition, "+") that fulfills the constraints of an Abelian group.
///
///     *An Abelian group is a set with a closed commutative and associative addition with the divisibility property and an identity element.*
/// * A second abstract operator (usually the multiplication, "×") that fulfills the constraints of a monoid.
///
///     *A set equipped with a closed associative multiplication with the divisibility property and an identity element.*
///
/// The multiplication is distributive over the addition:
///
/// # Distributivity
///
/// ~~~notrust
/// a, b, c ∈ Self, a × (b + c) = a × b + a × c.
/// ~~~
pub trait AbstractRing<A: Operator = Additive, M: Operator = Multiplicative>:
    AbstractGroupAbelian<A> + AbstractMonoid<M>
{
    /// Returns `true` if the multiplication and addition operators are distributive for
    /// the given argument tuple. Approximate equality is used for verifications.
    fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool
    where
        Self: RelativeEq,
    {
        let (a, b, c) = args;
        let a = || W::<_, A, M>::new(a.clone());
        let b = || W::<_, A, M>::new(b.clone());
        let c = || W::<_, A, M>::new(c.clone());

        // Left distributivity
        relative_eq!(a() * (b() + c()), a() * b() + a() * c()) &&
        // Right distributivity
        relative_eq!((b() + c()) * a(), b() * a() + c() * a())
    }

    /// Returns `true` if the multiplication and addition operators are distributive for
    /// the given argument tuple.
    fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool
    where
        Self: Eq,
    {
        let (a, b, c) = args;
        let a = || W::<_, A, M>::new(a.clone());
        let b = || W::<_, A, M>::new(b.clone());
        let c = || W::<_, A, M>::new(c.clone());

        // Left distributivity
        a() * (b() + c()) == (a() * b()) + (a() * c()) &&
        // Right distributivity
        (b() + c()) * a() == (b() * a()) + (c() * a())
    }
}

/// Implements the ring trait for types provided.
/// # Examples
///
/// ```
/// # #[macro_use]
/// # extern crate alga;
/// # use alga::general::{AbstractMagma, AbstractRing, Additive, Multiplicative, TwoSidedInverse, Identity};
/// # fn main() {}
/// #[derive(PartialEq, Clone)]
/// struct Wrapper<T>(T);
///
/// impl<T: AbstractMagma<Additive>> AbstractMagma<Additive> for Wrapper<T> {
///     fn operate(&self, right: &Self) -> Self {
///         Wrapper(self.0.operate(&right.0))
///     }
/// }
///
/// impl<T: TwoSidedInverse<Additive>> TwoSidedInverse<Additive> for Wrapper<T> {
///     fn two_sided_inverse(&self) -> Self {
///         Wrapper(self.0.two_sided_inverse())
///     }
/// }
///
/// impl<T: Identity<Additive>> Identity<Additive> for Wrapper<T> {
///     fn identity() -> Self {
///         Wrapper(T::identity())
///     }
/// }
///
/// impl<T: AbstractMagma<Multiplicative>> AbstractMagma<Multiplicative> for Wrapper<T> {
///     fn operate(&self, right: &Self) -> Self {
///         Wrapper(self.0.operate(&right.0))
///     }
/// }
///
/// impl<T: Identity<Multiplicative>> Identity<Multiplicative> for Wrapper<T> {
///     fn identity() -> Self {
///         Wrapper(T::identity())
///     }
/// }
///
/// impl_ring!(<Additive, Multiplicative> for Wrapper<T> where T: AbstractRing);
/// ```
macro_rules! impl_ring(
    (<$A:ty, $M:ty> for $($T:tt)+) => {
        impl_abelian!(<$A> for $($T)+);
        impl_monoid!(<$M> for $($T)+);
        impl_marker!($crate::general::AbstractRing<$A, $M>; $($T)+);
    }
);

/// A ring with a commutative multiplication.
///
/// *A **commutative ring** is a set with two binary operations: a closed commutative and associative with the divisibility property and an identity element,
/// and another closed associative and **commutative** with the divisibility property and an identity element.*
///
/// # Commutativity
///
/// ```notrust
/// ∀ a, b ∈ Self, a × b = b × a
/// ```
pub trait AbstractRingCommutative<A: Operator = Additive, M: Operator = Multiplicative>:
    AbstractRing<A, M>
{
    /// Returns `true` if the multiplication operator is commutative for the given argument tuple.
    /// Approximate equality is used for verifications.
    fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool
    where
        Self: RelativeEq,
    {
        let (a, b) = args;
        let a = || W::<_, A, M>::new(a.clone());
        let b = || W::<_, A, M>::new(b.clone());

        relative_eq!(a() * b(), b() * a())
    }

    /// Returns `true` if the multiplication operator is commutative for the given argument tuple.
    fn prop_mul_is_commutative(args: (Self, Self)) -> bool
    where
        Self: Eq,
    {
        let (a, b) = args;
        let a = || W::<_, A, M>::new(a.clone());
        let b = || W::<_, A, M>::new(b.clone());

        a() * b() == b() * a()
    }
}

/// Implements the commutative ring trait for types provided.
/// # Examples
///
/// ```
/// # #[macro_use]
/// # extern crate alga;
/// # use alga::general::{AbstractMagma, AbstractRingCommutative, Additive, Multiplicative, TwoSidedInverse, Identity};
/// # fn main() {}
/// #[derive(PartialEq, Clone)]
/// struct Wrapper<T>(T);
///
/// impl<T: AbstractMagma<Additive>> AbstractMagma<Additive> for Wrapper<T> {
///     fn operate(&self, right: &Self) -> Self {
///         Wrapper(self.0.operate(&right.0))
///     }
/// }
///
/// impl<T: TwoSidedInverse<Additive>> TwoSidedInverse<Additive> for Wrapper<T> {
///     fn two_sided_inverse(&self) -> Self {
///         Wrapper(self.0.two_sided_inverse())
///     }
/// }
///
/// impl<T: Identity<Additive>> Identity<Additive> for Wrapper<T> {
///     fn identity() -> Self {
///         Wrapper(T::identity())
///     }
/// }
///
/// impl<T: AbstractMagma<Multiplicative>> AbstractMagma<Multiplicative> for Wrapper<T> {
///     fn operate(&self, right: &Self) -> Self {
///         Wrapper(self.0.operate(&right.0))
///     }
/// }
///
/// impl<T: Identity<Multiplicative>> Identity<Multiplicative> for Wrapper<T> {
///     fn identity() -> Self {
///         Wrapper(T::identity())
///     }
/// }
///
/// impl_ring!(<Additive, Multiplicative> for Wrapper<T> where T: AbstractRingCommutative);
/// ```
macro_rules! impl_ring_commutative(
    (<$A:ty, $M:ty> for $($T:tt)+) => {
        impl_ring!(<$A, $M> for $($T)+);
        impl_marker!($crate::general::AbstractRingCommutative<$A, $M>; $($T)+);
    }
);

/// A field is a commutative ring, and an Abelian group under both operators.
///
/// *A **field** is a set with two binary operations, an addition and a multiplication, which are both closed, commutative, associative
/// possess the divisibility property and an identity element, noted 0 and 1 respectively. Furthermore the multiplication is distributive
/// over the addition.*
pub trait AbstractField<A: Operator = Additive, M: Operator = Multiplicative>:
    AbstractRingCommutative<A, M> + AbstractGroupAbelian<M>
{
}

/// Implements the field trait for types provided.
/// # Examples
///
/// ```
/// # #[macro_use]
/// # extern crate alga;
/// # use alga::general::{AbstractMagma, AbstractField, Additive, Multiplicative, TwoSidedInverse, Identity};
/// # fn main() {}
/// #[derive(PartialEq, Clone)]
/// struct Wrapper<T>(T);
///
/// impl<T: AbstractMagma<Additive>> AbstractMagma<Additive> for Wrapper<T> {
///     fn operate(&self, right: &Self) -> Self {
///         Wrapper(self.0.operate(&right.0))
///     }
/// }
///
/// impl<T: TwoSidedInverse<Additive>> TwoSidedInverse<Additive> for Wrapper<T> {
///     fn two_sided_inverse(&self) -> Self {
///         Wrapper(self.0.two_sided_inverse())
///     }
/// }
///
/// impl<T: Identity<Additive>> Identity<Additive> for Wrapper<T> {
///     fn identity() -> Self {
///         Wrapper(T::identity())
///     }
/// }
///
/// impl<T: AbstractMagma<Multiplicative>> AbstractMagma<Multiplicative> for Wrapper<T> {
///     fn operate(&self, right: &Self) -> Self {
///         Wrapper(self.0.operate(&right.0))
///     }
/// }
/// impl<T: TwoSidedInverse<Multiplicative>> TwoSidedInverse<Multiplicative> for Wrapper<T> {
///     fn two_sided_inverse(&self) -> Self {
///         Wrapper(self.0.two_sided_inverse())
///     }
/// }
///
/// impl<T: Identity<Multiplicative>> Identity<Multiplicative> for Wrapper<T> {
///     fn identity() -> Self {
///         Wrapper(T::identity())
///     }
/// }
///
/// impl_field!(<Additive, Multiplicative> for Wrapper<T> where T: AbstractField);
/// ```
macro_rules! impl_field(
    (<$A:ty, $M:ty> for $($T:tt)+) => {
        impl_ring_commutative!(<$A, $M> for $($T)+);
        impl_marker!($crate::general::AbstractQuasigroup<$M>; $($T)+);
        impl_marker!($crate::general::AbstractLoop<$M>; $($T)+);
        impl_marker!($crate::general::AbstractGroup<$M>; $($T)+);
        impl_marker!($crate::general::AbstractGroupAbelian<$M>; $($T)+);
        impl_marker!($crate::general::AbstractField<$A, $M>; $($T)+);
    }
);

/*
 *
 * Implementations.
 *
 */
impl_ring_commutative!(<Additive, Multiplicative> for i8; i16; i32; i64; i128; isize);
impl_field!(<Additive, Multiplicative> for f32; f64);
#[cfg(feature = "decimal")]
impl_field!(<Additive, Multiplicative> for d128);

impl<N: Num + Clone + ClosedNeg + AbstractRing> AbstractRing for Complex<N> {}
impl<N: Num + Clone + ClosedNeg + AbstractRingCommutative> AbstractRingCommutative for Complex<N> {}
impl<N: Num + Clone + ClosedNeg + AbstractField> AbstractField for Complex<N> {}