1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
// Copyright 2015 Brendan Zabarauskas
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! A crate that provides facilities for testing the approximate equality of floating-point
//! based types, using either relative difference, or units in the last place (ULPs)
//! comparisons.
//!
//! You can also use the `approx_{eq, ne}!` `assert_approx_{eq, ne}!` macros to test for equality
//! using a more positional style.
//!
//! ```rust
//! #[macro_use]
//! extern crate approx;
//!
//! use std::f64;
//!
//! # fn main() {
//! abs_diff_eq!(1.0, 1.0);
//! abs_diff_eq!(1.0, 1.0, epsilon = f64::EPSILON);
//!
//! relative_eq!(1.0, 1.0);
//! relative_eq!(1.0, 1.0, epsilon = f64::EPSILON);
//! relative_eq!(1.0, 1.0, max_relative = 1.0);
//! relative_eq!(1.0, 1.0, epsilon = f64::EPSILON, max_relative = 1.0);
//! relative_eq!(1.0, 1.0, max_relative = 1.0, epsilon = f64::EPSILON);
//!
//! ulps_eq!(1.0, 1.0);
//! ulps_eq!(1.0, 1.0, epsilon = f64::EPSILON);
//! ulps_eq!(1.0, 1.0, max_ulps = 4);
//! ulps_eq!(1.0, 1.0, epsilon = f64::EPSILON, max_ulps = 4);
//! ulps_eq!(1.0, 1.0, max_ulps = 4, epsilon = f64::EPSILON);
//! # }
//! ```
//!
//! # Implementing approximate equality for custom types
//!
//! The `ApproxEq` trait allows approximate equalities to be implemented on types, based on the
//! fundamental floating point implementations.
//!
//! For example, we might want to be able to do approximate assertions on a complex number type:
//!
//! ```rust
//! #[macro_use]
//! extern crate approx;
//! # use approx::{AbsDiffEq, RelativeEq, UlpsEq};
//!
//! #[derive(Debug, PartialEq)]
//! struct Complex<T> {
//!     x: T,
//!     i: T,
//! }
//! # impl<T: AbsDiffEq> AbsDiffEq for Complex<T> where T::Epsilon: Copy {
//! #     type Epsilon = T::Epsilon;
//! #     fn default_epsilon() -> T::Epsilon { T::default_epsilon() }
//! #     fn abs_diff_eq(&self, other: &Self, epsilon: T::Epsilon) -> bool {
//! #         T::abs_diff_eq(&self.x, &other.x, epsilon) &&
//! #         T::abs_diff_eq(&self.i, &other.i, epsilon)
//! #     }
//! # }
//! # impl<T: RelativeEq> RelativeEq for Complex<T> where T::Epsilon: Copy {
//! #     fn default_max_relative() -> T::Epsilon { T::default_max_relative() }
//! #     fn relative_eq(&self, other: &Self, epsilon: T::Epsilon, max_relative: T::Epsilon)
//! #                   -> bool {
//! #         T::relative_eq(&self.x, &other.x, epsilon, max_relative) &&
//! #         T::relative_eq(&self.i, &other.i, epsilon, max_relative)
//! #     }
//! # }
//! # impl<T: UlpsEq> UlpsEq for Complex<T> where T::Epsilon: Copy {
//! #     fn default_max_ulps() -> u32 { T::default_max_ulps() }
//! #     fn ulps_eq(&self, other: &Self, epsilon: T::Epsilon, max_ulps: u32) -> bool {
//! #         T::ulps_eq(&self.x, &other.x, epsilon, max_ulps) &&
//! #         T::ulps_eq(&self.i, &other.i, epsilon, max_ulps)
//! #     }
//! # }
//!
//! # fn main() {
//! let x = Complex { x: 1.2, i: 2.3 };
//!
//! assert_relative_eq!(x, x);
//! assert_ulps_eq!(x, x, max_ulps = 4);
//! # }
//! ```
//!
//! To do this we can implement `AbsDiffEq`, `RelativeEq` and `UlpsEq` generically in terms of a
//! type parameter that also implements `ApproxEq`, `RelativeEq` and `UlpsEq` respectively. This
//! means that we can make comparisons for either `Complex<f32>` or `Complex<f64>`:
//!
//! ```rust
//! # use approx::{AbsDiffEq, RelativeEq, UlpsEq};
//! # #[derive(Debug, PartialEq)]
//! # struct Complex<T> { x: T, i: T, }
//! #
//! impl<T: AbsDiffEq> AbsDiffEq for Complex<T> where
//!     T::Epsilon: Copy,
//! {
//!     type Epsilon = T::Epsilon;
//!
//!     fn default_epsilon() -> T::Epsilon {
//!         T::default_epsilon()
//!     }
//!
//!     fn abs_diff_eq(&self, other: &Self, epsilon: T::Epsilon) -> bool {
//!         T::abs_diff_eq(&self.x, &other.x, epsilon) &&
//!         T::abs_diff_eq(&self.i, &other.i, epsilon)
//!     }
//! }
//!
//! impl<T: RelativeEq> RelativeEq for Complex<T> where
//!     T::Epsilon: Copy,
//! {
//!     fn default_max_relative() -> T::Epsilon {
//!         T::default_max_relative()
//!     }
//!
//!     fn relative_eq(&self, other: &Self, epsilon: T::Epsilon, max_relative: T::Epsilon) -> bool {
//!         T::relative_eq(&self.x, &other.x, epsilon, max_relative) &&
//!         T::relative_eq(&self.i, &other.i, epsilon, max_relative)
//!     }
//! }
//!
//! impl<T: UlpsEq> UlpsEq for Complex<T> where
//!     T::Epsilon: Copy,
//! {
//!     fn default_max_ulps() -> u32 {
//!         T::default_max_ulps()
//!     }
//!
//!     fn ulps_eq(&self, other: &Self, epsilon: T::Epsilon, max_ulps: u32) -> bool {
//!         T::ulps_eq(&self.x, &other.x, epsilon, max_ulps) &&
//!         T::ulps_eq(&self.i, &other.i, epsilon, max_ulps)
//!     }
//! }
//! ```
//!
//! # References
//!
//! Floating point is hard! Thanks goes to these links for helping to make things a _little_
//! easier to understand:
//!
//! - [Comparing Floating Point Numbers, 2012 Edition]
//!   (https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/)
//! - [The Floating Point Guide - Comparison](http://floating-point-gui.de/errors/comparison/)
//! - [What Every Computer Scientist Should Know About Floating-Point Arithmetic]
//!   (https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html)

#![cfg_attr(not(feature = "std"), no_std)]

#[cfg(feature = "num-complex")]
extern crate num_complex;
extern crate num_traits;

#[cfg(not(feature = "std"))]
use core as std;

mod abs_diff_eq;
mod relative_eq;
mod ulps_eq;

mod macros;

pub use abs_diff_eq::AbsDiffEq;
pub use relative_eq::RelativeEq;
pub use ulps_eq::UlpsEq;

/// The requisite parameters for testing for approximate equality using a
/// absolute difference based comparison.
///
/// This is not normally used directly, rather via the
/// `assert_abs_diff_{eq|ne}!` and `abs_diff_{eq|ne}!` macros.
///
/// # Example
///
/// ```rust
/// use std::f64;
/// use approx::AbsDiff;
///
/// AbsDiff::default().eq(&1.0, &1.0);
/// AbsDiff::default().epsilon(f64::EPSILON).eq(&1.0, &1.0);
/// ```
pub struct AbsDiff<A, B = A>
where
    A: AbsDiffEq<B> + ?Sized,
    B: ?Sized,
{
    /// The tolerance to use when testing values that are close together.
    pub epsilon: A::Epsilon,
}

impl<A, B> Default for AbsDiff<A, B>
where
    A: AbsDiffEq<B> + ?Sized,
    B: ?Sized,
{
    #[inline]
    fn default() -> AbsDiff<A, B> {
        AbsDiff {
            epsilon: A::default_epsilon(),
        }
    }
}

impl<A, B> AbsDiff<A, B>
where
    A: AbsDiffEq<B> + ?Sized,
    B: ?Sized,
{
    /// Replace the epsilon value with the one specified.
    #[inline]
    pub fn epsilon(self, epsilon: A::Epsilon) -> AbsDiff<A, B> {
        AbsDiff { epsilon, ..self }
    }

    /// Peform the equality comparison
    #[inline]
    pub fn eq(self, lhs: &A, rhs: &B) -> bool {
        A::abs_diff_eq(lhs, rhs, self.epsilon)
    }

    /// Peform the inequality comparison
    #[inline]
    pub fn ne(self, lhs: &A, rhs: &B) -> bool {
        A::abs_diff_ne(lhs, rhs, self.epsilon)
    }
}

/// The requisite parameters for testing for approximate equality using a
/// relative based comparison.
///
/// This is not normally used directly, rather via the
/// `assert_relative_{eq|ne}!` and `relative_{eq|ne}!` macros.
///
/// # Example
///
/// ```rust
/// use std::f64;
/// use approx::Relative;
///
/// Relative::default().eq(&1.0, &1.0);
/// Relative::default().epsilon(f64::EPSILON).eq(&1.0, &1.0);
/// Relative::default().max_relative(1.0).eq(&1.0, &1.0);
/// Relative::default().epsilon(f64::EPSILON).max_relative(1.0).eq(&1.0, &1.0);
/// Relative::default().max_relative(1.0).epsilon(f64::EPSILON).eq(&1.0, &1.0);
/// ```
pub struct Relative<A, B = A>
where
    A: RelativeEq<B> + ?Sized,
    B: ?Sized,
{
    /// The tolerance to use when testing values that are close together.
    pub epsilon: A::Epsilon,
    /// The relative tolerance for testing values that are far-apart.
    pub max_relative: A::Epsilon,
}

impl<A, B> Default for Relative<A, B>
where
    A: RelativeEq<B> + ?Sized,
    B: ?Sized,
{
    #[inline]
    fn default() -> Relative<A, B> {
        Relative {
            epsilon: A::default_epsilon(),
            max_relative: A::default_max_relative(),
        }
    }
}

impl<A, B> Relative<A, B>
where
    A: RelativeEq<B> + ?Sized,
    B: ?Sized,
{
    /// Replace the epsilon value with the one specified.
    #[inline]
    pub fn epsilon(self, epsilon: A::Epsilon) -> Relative<A, B> {
        Relative { epsilon, ..self }
    }

    /// Replace the maximum relative value with the one specified.
    #[inline]
    pub fn max_relative(self, max_relative: A::Epsilon) -> Relative<A, B> {
        Relative {
            max_relative,
            ..self
        }
    }

    /// Peform the equality comparison
    #[inline]
    pub fn eq(self, lhs: &A, rhs: &B) -> bool {
        A::relative_eq(lhs, rhs, self.epsilon, self.max_relative)
    }

    /// Peform the inequality comparison
    #[inline]
    pub fn ne(self, lhs: &A, rhs: &B) -> bool {
        A::relative_ne(lhs, rhs, self.epsilon, self.max_relative)
    }
}

/// The requisite parameters for testing for approximate equality using an ULPs
/// based comparison.
///
/// This is not normally used directly, rather via the `assert_ulps_{eq|ne}!`
/// and `ulps_{eq|ne}!` macros.
///
/// # Example
///
/// ```rust
/// use std::f64;
/// use approx::Ulps;
///
/// Ulps::default().eq(&1.0, &1.0);
/// Ulps::default().epsilon(f64::EPSILON).eq(&1.0, &1.0);
/// Ulps::default().max_ulps(4).eq(&1.0, &1.0);
/// Ulps::default().epsilon(f64::EPSILON).max_ulps(4).eq(&1.0, &1.0);
/// Ulps::default().max_ulps(4).epsilon(f64::EPSILON).eq(&1.0, &1.0);
/// ```
pub struct Ulps<A, B = A>
where
    A: UlpsEq<B> + ?Sized,
    B: ?Sized,
{
    /// The tolerance to use when testing values that are close together.
    pub epsilon: A::Epsilon,
    /// The ULPs to tolerate when testing values that are far-apart.
    pub max_ulps: u32,
}

impl<A, B> Default for Ulps<A, B>
where
    A: UlpsEq<B> + ?Sized,
    B: ?Sized,
{
    #[inline]
    fn default() -> Ulps<A, B> {
        Ulps {
            epsilon: A::default_epsilon(),
            max_ulps: A::default_max_ulps(),
        }
    }
}

impl<A, B> Ulps<A, B>
where
    A: UlpsEq<B> + ?Sized,
    B: ?Sized,
{
    /// Replace the epsilon value with the one specified.
    #[inline]
    pub fn epsilon(self, epsilon: A::Epsilon) -> Ulps<A, B> {
        Ulps { epsilon, ..self }
    }

    /// Replace the max ulps value with the one specified.
    #[inline]
    pub fn max_ulps(self, max_ulps: u32) -> Ulps<A, B> {
        Ulps { max_ulps, ..self }
    }

    /// Peform the equality comparison
    #[inline]
    pub fn eq(self, lhs: &A, rhs: &B) -> bool {
        A::ulps_eq(lhs, rhs, self.epsilon, self.max_ulps)
    }

    /// Peform the inequality comparison
    #[inline]
    pub fn ne(self, lhs: &A, rhs: &B) -> bool {
        A::ulps_ne(lhs, rhs, self.epsilon, self.max_ulps)
    }
}