1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
#![deny(unsafe_code)]

//! Abstracting over accessing parts of stored value.
//!
//! Sometimes, there's a big globalish data structure (like a configuration for the whole program).
//! Then there are parts of the program that need access to up-to-date version of their *part* of
//! the configuration, but for reasons of code separation and reusability, it is not desirable to
//! pass the whole configuration to each of the parts.
//!
//! This module provides means to grant the parts access to the relevant subsets of such global
//! data structure while masking the fact it is part of the bigger whole from the component.
//!
//! Note that the [`cache`][crate::cache] module has its own [`Access`][crate::cache::Access] trait
//! that serves a similar purpose, but with cached access. The signatures are different, therefore
//! an incompatible trait.
//!
//! # The general idea
//!
//! Each part of the code accepts generic [`Access<T>`][Access] for the `T` of its interest. This
//! provides means to load current version of the structure behind the scenes and get only the
//! relevant part, without knowing what the big structure is.
//!
//! For technical reasons, the [`Access`] trait is not object safe. If type erasure is desired, it
//! is possible use the [`DynAccess`][crate::access::DynAccess] instead, which is object safe, but
//! slightly slower.
//!
//! For some cases, it is possible to use [`ArcSwapAny::map`]. If that is not flexible enough, the
//! [`Map`] type can be created directly.
//!
//! Note that the [`Access`] trait is also implemented for [`ArcSwapAny`] itself. Additionally,
//! there's the [`Constant`][crate::access::Constant] helper type, which is useful mostly for
//! testing (it doesn't allow reloading).
//!
//! # Performance
//!
//! In general, these utilities use [`ArcSwapAny::load`] internally and then apply the provided
//! transformation. This has several consequences:
//!
//! * Limitations of the [`load`][ArcSwapAny::load] apply ‒ including the recommendation to not
//!   hold the returned guard object for too long, but long enough to get consistency.
//! * The transformation should be cheap ‒ optimally just borrowing into the structure.
//!
//! # Examples
//!
//! ```rust
//! use std::sync::Arc;
//! use std::thread;
//! use std::time::Duration;
//!
//! use arc_swap::ArcSwap;
//! use arc_swap::access::{Access, Constant, Map};
//!
//! fn work_with_usize<A: Access<usize> + Send + 'static>(a: A) {
//!     thread::spawn(move || {
//!         loop {
//!             let value = a.load();
//!             println!("{}", *value);
//!             // Not strictly necessary, but dropping the guard can free some resources, like
//!             // slots for tracking what values are still in use. We do it before the sleeping,
//!             // not at the end of the scope.
//!             drop(value);
//!             thread::sleep(Duration::from_millis(50));
//!         }
//!     });
//! }
//!
//! // Passing the whole thing directly
//! // (If we kept another Arc to it, we could change the value behind the scenes)
//! work_with_usize(Arc::new(ArcSwap::from_pointee(42)));
//!
//! // Passing a subset of a structure
//! struct Cfg {
//!     value: usize,
//! }
//!
//! let cfg = Arc::new(ArcSwap::from_pointee(Cfg { value: 0 }));
//! work_with_usize(Map::new(Arc::clone(&cfg), |cfg: &Cfg| &cfg.value));
//! cfg.store(Arc::new(Cfg { value: 42 }));
//!
//! // Passing a constant that can't change. Useful mostly for testing purposes.
//! work_with_usize(Constant(42));
//! ```

use std::marker::PhantomData;
use std::ops::Deref;
use std::rc::Rc;
use std::sync::Arc;

use super::ref_cnt::RefCnt;
use super::strategy::Strategy;
use super::{ArcSwapAny, Guard};

/// Abstracts over ways code can get access to a value of type `T`.
///
/// This is the trait that parts of code will use when accessing a subpart of the big data
/// structure. See the [module documentation](index.html) for details.
pub trait Access<T> {
    /// A guard object containing the value and keeping it alive.
    ///
    /// For technical reasons, the library doesn't allow direct access into the stored value. A
    /// temporary guard object must be loaded, that keeps the actual value alive for the time of
    /// use.
    type Guard: Deref<Target = T>;

    /// The loading method.
    ///
    /// This returns the guard that holds the actual value. Should be called anew each time a fresh
    /// value is needed.
    fn load(&self) -> Self::Guard;
}

impl<T, A: Access<T>, P: Deref<Target = A>> Access<T> for P {
    type Guard = A::Guard;
    fn load(&self) -> Self::Guard {
        self.deref().load()
    }
}

impl<T: RefCnt, S: Strategy<T>> Access<T> for ArcSwapAny<T, S> {
    type Guard = Guard<T, S>;

    fn load(&self) -> Self::Guard {
        self.load()
    }
}

#[derive(Debug)]
#[doc(hidden)]
pub struct DirectDeref<T: RefCnt, S: Strategy<T>>(Guard<T, S>);

impl<T, S: Strategy<Arc<T>>> Deref for DirectDeref<Arc<T>, S> {
    type Target = T;
    fn deref(&self) -> &T {
        self.0.deref().deref()
    }
}

impl<T, S: Strategy<Arc<T>>> Access<T> for ArcSwapAny<Arc<T>, S> {
    type Guard = DirectDeref<Arc<T>, S>;
    fn load(&self) -> Self::Guard {
        DirectDeref(self.load())
    }
}

impl<T, S: Strategy<Rc<T>>> Deref for DirectDeref<Rc<T>, S> {
    type Target = T;
    fn deref(&self) -> &T {
        self.0.deref().deref()
    }
}

impl<T, S: Strategy<Rc<T>>> Access<T> for ArcSwapAny<Rc<T>, S> {
    type Guard = DirectDeref<Rc<T>, S>;
    fn load(&self) -> Self::Guard {
        DirectDeref(self.load())
    }
}

#[doc(hidden)]
pub struct DynGuard<T: ?Sized>(Box<dyn Deref<Target = T>>);

impl<T: ?Sized> Deref for DynGuard<T> {
    type Target = T;
    fn deref(&self) -> &T {
        &self.0
    }
}

/// An object-safe version of the [`Access`] trait.
///
/// This can be used instead of the [`Access`] trait in case a type erasure is desired. This has
/// the effect of performance hit (due to boxing of the result and due to dynamic dispatch), but
/// makes certain code simpler and possibly makes the executable smaller.
///
/// This is automatically implemented for everything that implements [`Access`].
///
/// # Examples
///
/// ```rust
/// use std::thread;
///
/// use arc_swap::access::{Constant, DynAccess};
///
/// fn do_something(value: Box<dyn DynAccess<usize> + Send>) {
///     thread::spawn(move || {
///         let v = value.load();
///         println!("{}", *v);
///     });
/// }
///
/// do_something(Box::new(Constant(42)));
/// ```
pub trait DynAccess<T> {
    /// The equivalent of [`Access::load`].
    fn load(&self) -> DynGuard<T>;
}

impl<T, A> DynAccess<T> for A
where
    A: Access<T>,
    A::Guard: 'static,
{
    fn load(&self) -> DynGuard<T> {
        DynGuard(Box::new(Access::load(self)))
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Debug)]
pub struct MapGuard<G, F, T, R> {
    guard: G,
    projection: F,
    _t: PhantomData<fn(&T) -> &R>,
}

impl<G, F, T, R> Deref for MapGuard<G, F, T, R>
where
    G: Deref<Target = T>,
    F: Fn(&T) -> &R,
{
    type Target = R;
    fn deref(&self) -> &R {
        (self.projection)(&self.guard)
    }
}

/// An adaptor to provide access to a part of larger structure.
///
/// This is the *active* part of this module. Use the [module documentation](index.html) for the
/// details.
#[derive(Copy, Clone, Debug)]
pub struct Map<A, T, F> {
    access: A,
    projection: F,
    _t: PhantomData<fn() -> T>,
}

impl<A, T, F> Map<A, T, F> {
    /// Creates a new instance.
    ///
    /// # Parameters
    ///
    /// * `access`: Access to the bigger structure. This is usually something like `Arc<ArcSwap>`
    ///   or `&ArcSwap`. It is technically possible to use any other [`Access`] here, though, for
    ///   example to sub-delegate into even smaller structure from a [`Map`] (or generic
    ///   [`Access`]).
    /// * `projection`: A function (or closure) responsible to providing a reference into the
    ///   bigger bigger structure, selecting just subset of it. In general, it is expected to be
    ///   *cheap* (like only taking reference).
    pub fn new<R>(access: A, projection: F) -> Self
    where
        F: Fn(&T) -> &R + Clone,
    {
        Map {
            access,
            projection,
            _t: PhantomData,
        }
    }
}

impl<A, F, T, R> Access<R> for Map<A, T, F>
where
    A: Access<T>,
    F: Fn(&T) -> &R + Clone,
{
    type Guard = MapGuard<A::Guard, F, T, R>;
    fn load(&self) -> Self::Guard {
        let guard = self.access.load();
        MapGuard {
            guard,
            projection: self.projection.clone(),
            _t: PhantomData,
        }
    }
}

#[doc(hidden)]
#[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub struct ConstantDeref<T>(T);

impl<T> Deref for ConstantDeref<T> {
    type Target = T;
    fn deref(&self) -> &T {
        &self.0
    }
}

/// Access to an constant.
///
/// This wraps a constant value to provide [`Access`] to it. It is constant in the sense that,
/// unlike [`ArcSwapAny`] and [`Map`], the loaded value will always stay the same (there's no
/// remote `store`).
///
/// The purpose is mostly testing and plugging a parameter that works generically from code that
/// doesn't need the updating functionality.
#[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub struct Constant<T>(pub T);

impl<T: Clone> Access<T> for Constant<T> {
    type Guard = ConstantDeref<T>;
    fn load(&self) -> Self::Guard {
        ConstantDeref(self.0.clone())
    }
}

#[cfg(test)]
mod tests {
    use super::super::{ArcSwap, ArcSwapOption};

    use super::*;

    fn check_static_dispatch_direct<A: Access<usize>>(a: A) {
        assert_eq!(42, *a.load());
    }

    fn check_static_dispatch<A: Access<Arc<usize>>>(a: A) {
        assert_eq!(42, **a.load());
    }

    /// Tests dispatching statically from arc-swap works
    #[test]
    fn static_dispatch() {
        let a = ArcSwap::from_pointee(42);
        check_static_dispatch_direct(&a);
        check_static_dispatch(&a);
        check_static_dispatch(a);
    }

    fn check_dyn_dispatch_direct(a: &dyn DynAccess<usize>) {
        assert_eq!(42, *a.load());
    }

    fn check_dyn_dispatch(a: &dyn DynAccess<Arc<usize>>) {
        assert_eq!(42, **a.load());
    }

    /// Tests we can also do a dynamic dispatch of the companion trait
    #[test]
    fn dyn_dispatch() {
        let a = ArcSwap::from_pointee(42);
        check_dyn_dispatch_direct(&a);
        check_dyn_dispatch(&a);
    }

    fn check_transition<A>(a: A)
    where
        A: Access<usize>,
        A::Guard: 'static,
    {
        check_dyn_dispatch_direct(&a)
    }

    /// Tests we can easily transition from the static dispatch trait to the dynamic one
    #[test]
    fn transition() {
        let a = ArcSwap::from_pointee(42);
        check_transition(&a);
        check_transition(a);
    }

    /// Test we can dispatch from Arc<ArcSwap<_>> or similar.
    #[test]
    fn indirect() {
        let a = Arc::new(ArcSwap::from_pointee(42));
        check_static_dispatch(&a);
        check_dyn_dispatch(&a);
    }

    struct Cfg {
        value: usize,
    }

    #[test]
    fn map() {
        let a = ArcSwap::from_pointee(Cfg { value: 42 });
        let map = a.map(|a: &Cfg| &a.value);
        check_static_dispatch_direct(&map);
        check_dyn_dispatch_direct(&map);
    }

    #[test]
    fn map_option_some() {
        let a = ArcSwapOption::from_pointee(Cfg { value: 42 });
        let map = a.map(|a: &Option<Arc<Cfg>>| a.as_ref().map(|c| &c.value).unwrap());
        check_static_dispatch_direct(&map);
        check_dyn_dispatch_direct(&map);
    }

    #[test]
    fn map_option_none() {
        let a = ArcSwapOption::empty();
        let map = a.map(|a: &Option<Arc<Cfg>>| a.as_ref().map(|c| &c.value).unwrap_or(&42));
        check_static_dispatch_direct(&map);
        check_dyn_dispatch_direct(&map);
    }

    #[test]
    fn constant() {
        let c = Constant(42);
        check_static_dispatch_direct(&c);
        check_dyn_dispatch_direct(&c);
        check_static_dispatch_direct(c);
    }

    #[test]
    fn map_reload() {
        let a = ArcSwap::from_pointee(Cfg { value: 0 });
        let map = a.map(|cfg: &Cfg| &cfg.value);
        assert_eq!(0, *Access::load(&map));
        a.store(Arc::new(Cfg { value: 42 }));
        assert_eq!(42, *Access::load(&map));
    }
}