1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
#![doc(test(attr(deny(warnings))))] #![warn(missing_docs)] #![cfg_attr(docsrs, feature(doc_cfg))] //! Making [`Arc`][Arc] itself atomic //! //! The [`ArcSwap`] type is a container for an `Arc` that can be changed atomically. Semantically, //! it is similar to something like `Atomic<Arc<T>>` (if there was such a thing) or //! `RwLock<Arc<T>>` (but without the need for the locking). It is optimized for read-mostly //! scenarios, with consistent performance characteristics. //! //! # Motivation //! //! There are many situations in which one might want to have some data structure that is often //! read and seldom updated. Some examples might be a configuration of a service, routing tables, //! snapshot of some data that is renewed every few minutes, etc. //! //! In all these cases one needs: //! * Being able to read the current value of the data structure, fast, often and concurrently from //! many threads. //! * Using the same version of the data structure over longer period of time ‒ a query should be //! answered by a consistent version of data, a packet should be routed either by an old or by a //! new version of the routing table but not by a combination, etc. //! * Perform an update without disrupting the processing. //! //! The first idea would be to use [`RwLock<T>`][RwLock] and keep a read-lock for the whole time of //! processing. Update would, however, pause all processing until done. //! //! Better option would be to have [`RwLock<Arc<T>>`][RwLock]. Then one would lock, clone the [Arc] //! and unlock. This suffers from CPU-level contention (on the lock and on the reference count of //! the [Arc]) which makes it relatively slow. Depending on the implementation, an update may be //! blocked for arbitrary long time by a steady inflow of readers. //! //! ```rust //! # use std::sync::{Arc, RwLock}; //! # use once_cell::sync::Lazy; //! # struct RoutingTable; struct Packet; impl RoutingTable { fn route(&self, _: Packet) {} } //! static ROUTING_TABLE: Lazy<RwLock<Arc<RoutingTable>>> = Lazy::new(|| { //! RwLock::new(Arc::new(RoutingTable)) //! }); //! //! fn process_packet(packet: Packet) { //! let table = Arc::clone(&ROUTING_TABLE.read().unwrap()); //! table.route(packet); //! } //! # fn main() { process_packet(Packet); } //! ``` //! //! The [ArcSwap] can be used instead, which solves the above problems and has better performance //! characteristics than the [RwLock], both in contended and non-contended scenarios. //! //! ```rust //! # use arc_swap::ArcSwap; //! # use once_cell::sync::Lazy; //! # struct RoutingTable; struct Packet; impl RoutingTable { fn route(&self, _: Packet) {} } //! static ROUTING_TABLE: Lazy<ArcSwap<RoutingTable>> = Lazy::new(|| { //! ArcSwap::from_pointee(RoutingTable) //! }); //! //! fn process_packet(packet: Packet) { //! let table = ROUTING_TABLE.load(); //! table.route(packet); //! } //! # fn main() { process_packet(Packet); } //! ``` //! //! # Crate contents //! //! At the heart of the crate there are [`ArcSwap`] and [`ArcSwapOption`] types, containers for an //! [`Arc`] and [`Option<Arc>`][Option]. //! //! Technically, these are type aliases for partial instantiations of the [`ArcSwapAny`] type. The //! [`ArcSwapAny`] is more flexible and allows tweaking of many things (can store other things than //! [`Arc`]s, can configure the locking [`Strategy`]). For details about the tweaking, see the //! documentation of the [`strategy`] module and the [`RefCnt`] trait. //! //! The [`cache`] module provides means for speeding up read access of the contained data at the //! cost of delayed reclamation. //! //! The [`access`] module can be used to do projections into the contained data to separate parts //! of application from each other (eg. giving a component access to only its own part of //! configuration while still having it reloaded as a whole). //! //! # Before using //! //! The data structure is a bit niche. Before using, please check the //! [limitations and common pitfalls][docs::limitations] and the [performance //! characteristics][docs::performance], including choosing the right [read //! operation][docs::performance#read-operations]. //! //! You can also get an inspiration about what's possible in the [common patterns][docs::patterns] //! section. //! //! # Examples //! //! ```rust //! use std::sync::Arc; //! //! use arc_swap::ArcSwap; //! use crossbeam_utils::thread; //! //! fn main() { //! let config = ArcSwap::from(Arc::new(String::default())); //! thread::scope(|scope| { //! scope.spawn(|_| { //! let new_conf = Arc::new("New configuration".to_owned()); //! config.store(new_conf); //! }); //! for _ in 0..10 { //! scope.spawn(|_| { //! loop { //! let cfg = config.load(); //! if !cfg.is_empty() { //! assert_eq!(**cfg, "New configuration"); //! return; //! } //! } //! }); //! } //! }).unwrap(); //! } //! ``` //! //! [RwLock]: https://doc.rust-lang.org/std/sync/struct.RwLock.html pub mod access; mod as_raw; pub mod cache; mod compile_fail_tests; mod debt; pub mod docs; mod ref_cnt; pub mod strategy; #[cfg(feature = "weak")] mod weak; use std::borrow::Borrow; use std::fmt::{Debug, Display, Formatter, Result as FmtResult}; use std::marker::PhantomData; use std::mem; use std::ops::Deref; use std::ptr; use std::sync::atomic::{AtomicPtr, Ordering}; use std::sync::Arc; use crate::access::{Access, Map}; pub use crate::as_raw::AsRaw; pub use crate::cache::Cache; pub use crate::ref_cnt::RefCnt; use crate::strategy::sealed::Protected; use crate::strategy::{CaS, Strategy}; pub use crate::strategy::{DefaultStrategy, IndependentStrategy}; /// A temporary storage of the pointer. /// /// This guard object is returned from most loading methods (with the notable exception of /// [`load_full`](struct.ArcSwapAny.html#method.load_full)). It dereferences to the smart pointer /// loaded, so most operations are to be done using that. pub struct Guard<T: RefCnt, S: Strategy<T> = DefaultStrategy> { inner: S::Protected, } impl<'a, T: RefCnt, S: Strategy<T>> Guard<T, S> { /// Converts it into the held value. /// /// This, on occasion, may be a tiny bit faster than cloning the Arc or whatever is being held /// inside. // Associated function on purpose, because of deref #[allow(clippy::wrong_self_convention)] #[inline] pub fn into_inner(lease: Self) -> T { lease.inner.into_inner() } /// Create a guard for a given value `inner`. /// /// This can be useful on occasion to pass a specific object to code that expects or /// wants to store a Guard. /// /// # Example /// /// ```rust /// # use arc_swap::{ArcSwap, DefaultStrategy, Guard}; /// # use std::sync::Arc; /// # let p = ArcSwap::from_pointee(42); /// // Create two guards pointing to the same object /// let g1 = p.load(); /// let g2 = Guard::<_, DefaultStrategy>::from_inner(Arc::clone(&*g1)); /// # drop(g2); /// ``` pub fn from_inner(inner: T) -> Self { Guard { inner: S::Protected::from_inner(inner), } } } impl<'a, T: RefCnt, S: Strategy<T>> Deref for Guard<T, S> { type Target = T; #[inline] fn deref(&self) -> &T { self.inner.borrow() } } impl<T: RefCnt, S: Strategy<T>> From<T> for Guard<T, S> { fn from(inner: T) -> Self { Self::from_inner(inner) } } impl<T: Default + RefCnt, S: Strategy<T>> Default for Guard<T, S> { fn default() -> Self { Self::from(T::default()) } } impl<T: Debug + RefCnt, S: Strategy<T>> Debug for Guard<T, S> { fn fmt(&self, formatter: &mut Formatter) -> FmtResult { self.deref().fmt(formatter) } } impl<T: Display + RefCnt, S: Strategy<T>> Display for Guard<T, S> { fn fmt(&self, formatter: &mut Formatter) -> FmtResult { self.deref().fmt(formatter) } } /// Comparison of two pointer-like things. // A and B are likely to *be* references, or thin wrappers around that. Calling that with extra // reference is just annoying. #[allow(clippy::needless_pass_by_value)] fn ptr_eq<Base, A, B>(a: A, b: B) -> bool where A: AsRaw<Base>, B: AsRaw<Base>, { let a = a.as_raw(); let b = b.as_raw(); ptr::eq(a, b) } /// An atomic storage for a reference counted smart pointer like [`Arc`] or `Option<Arc>`. /// /// This is a storage where a smart pointer may live. It can be read and written atomically from /// several threads, but doesn't act like a pointer itself. /// /// One can be created [`from`] an [`Arc`]. To get the pointer back, use the /// [`load`](#method.load). /// /// # Note /// /// This is the common generic implementation. This allows sharing the same code for storing /// both `Arc` and `Option<Arc>` (and possibly other similar types). /// /// In your code, you most probably want to interact with it through the /// [`ArcSwap`](type.ArcSwap.html) and [`ArcSwapOption`](type.ArcSwapOption.html) aliases. However, /// the methods they share are described here and are applicable to both of them. That's why the /// examples here use `ArcSwap` ‒ but they could as well be written with `ArcSwapOption` or /// `ArcSwapAny`. /// /// # Type parameters /// /// * `T`: The smart pointer to be kept inside. This crate provides implementation for `Arc<_>` and /// `Option<Arc<_>>` (`Rc` too, but that one is not practically useful). But third party could /// provide implementations of the [`RefCnt`] trait and plug in others. /// * `S`: Chooses the [strategy] used to protect the data inside. They come with various /// performance trade offs, the default [`DefaultStrategy`] is good rule of thumb for most use /// cases. /// /// # Examples /// /// ```rust /// # use std::sync::Arc; /// # use arc_swap::ArcSwap; /// let arc = Arc::new(42); /// let arc_swap = ArcSwap::from(arc); /// assert_eq!(42, **arc_swap.load()); /// // It can be read multiple times /// assert_eq!(42, **arc_swap.load()); /// /// // Put a new one in there /// let new_arc = Arc::new(0); /// assert_eq!(42, *arc_swap.swap(new_arc)); /// assert_eq!(0, **arc_swap.load()); /// ``` /// /// [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html /// [`from`]: https://doc.rust-lang.org/nightly/std/convert/trait.From.html#tymethod.from /// [`RefCnt`]: trait.RefCnt.html pub struct ArcSwapAny<T: RefCnt, S: Strategy<T> = DefaultStrategy> { // Notes: AtomicPtr needs Sized /// The actual pointer, extracted from the Arc. ptr: AtomicPtr<T::Base>, /// We are basically an Arc in disguise. Inherit parameters from Arc by pretending to contain /// it. _phantom_arc: PhantomData<T>, /// Strategy to protect the data. strategy: S, } impl<T: RefCnt, S: Default + Strategy<T>> From<T> for ArcSwapAny<T, S> { fn from(val: T) -> Self { Self::with_strategy(val, S::default()) } } impl<T: RefCnt, S: Strategy<T>> Drop for ArcSwapAny<T, S> { fn drop(&mut self) { let ptr = *self.ptr.get_mut(); unsafe { // To pay any possible debts self.strategy.wait_for_readers(ptr, &self.ptr); // We are getting rid of the one stored ref count T::dec(ptr); } } } impl<T, S: Strategy<T>> Debug for ArcSwapAny<T, S> where T: Debug + RefCnt, { fn fmt(&self, formatter: &mut Formatter) -> FmtResult { formatter .debug_tuple("ArcSwapAny") .field(&self.load()) .finish() } } impl<T, S: Strategy<T>> Display for ArcSwapAny<T, S> where T: Display + RefCnt, { fn fmt(&self, formatter: &mut Formatter) -> FmtResult { self.load().fmt(formatter) } } impl<T: RefCnt + Default, S: Default + Strategy<T>> Default for ArcSwapAny<T, S> { fn default() -> Self { Self::new(T::default()) } } impl<T: RefCnt, S: Strategy<T>> ArcSwapAny<T, S> { /// Constructs a new storage. pub fn new(val: T) -> Self where S: Default, { Self::from(val) } /// Constructs a new storage while customizing the protection strategy. pub fn with_strategy(val: T, strategy: S) -> Self { // The AtomicPtr requires *mut in its interface. We are more like *const, so we cast it. // However, we always go back to *const right away when we get the pointer on the other // side, so it should be fine. let ptr = T::into_ptr(val); Self { ptr: AtomicPtr::new(ptr), _phantom_arc: PhantomData, strategy, } } /// Extracts the value inside. pub fn into_inner(mut self) -> T { let ptr = *self.ptr.get_mut(); // To pay all the debts unsafe { self.strategy.wait_for_readers(ptr, &self.ptr) }; mem::forget(self); unsafe { T::from_ptr(ptr) } } /// Loads the value. /// /// This makes another copy of the held pointer and returns it, atomically (it is /// safe even when other thread stores into the same instance at the same time). /// /// The method is lock-free and wait-free, but usually more expensive than /// [`load`](#method.load). pub fn load_full(&self) -> T { Guard::into_inner(self.load()) } /// Provides a temporary borrow of the object inside. /// /// This returns a proxy object allowing access to the thing held inside. However, there's /// only limited amount of possible cheap proxies in existence for each thread ‒ if more are /// created, it falls back to equivalent of [`load_full`](#method.load_full) internally. /// /// This is therefore a good choice to use for eg. searching a data structure or juggling the /// pointers around a bit, but not as something to store in larger amounts. The rule of thumb /// is this is suited for local variables on stack, but not in long-living data structures. /// /// # Consistency /// /// In case multiple related operations are to be done on the loaded value, it is generally /// recommended to call `load` just once and keep the result over calling it multiple times. /// First, keeping it is usually faster. But more importantly, the value can change between the /// calls to load, returning different objects, which could lead to logical inconsistency. /// Keeping the result makes sure the same object is used. /// /// ```rust /// # use arc_swap::ArcSwap; /// struct Point { /// x: usize, /// y: usize, /// } /// /// fn print_broken(p: &ArcSwap<Point>) { /// // This is broken, because the x and y may come from different points, /// // combining into an invalid point that never existed. /// println!("X: {}", p.load().x); /// // If someone changes the content now, between these two loads, we /// // have a problem /// println!("Y: {}", p.load().y); /// } /// /// fn print_correct(p: &ArcSwap<Point>) { /// // Here we take a snapshot of one specific point so both x and y come /// // from the same one. /// let point = p.load(); /// println!("X: {}", point.x); /// println!("Y: {}", point.y); /// } /// # let p = ArcSwap::from_pointee(Point { x: 10, y: 20 }); /// # print_correct(&p); /// # print_broken(&p); /// ``` #[inline] pub fn load(&self) -> Guard<T, S> { let protected = unsafe { self.strategy.load(&self.ptr) }; Guard { inner: protected } } /// Replaces the value inside this instance. /// /// Further loads will yield the new value. Uses [`swap`](#method.swap) internally. pub fn store(&self, val: T) { drop(self.swap(val)); } /// Exchanges the value inside this instance. pub fn swap(&self, new: T) -> T { let new = T::into_ptr(new); // AcqRel needed to publish the target of the new pointer and get the target of the old // one. // // SeqCst to synchronize the time lines with the group counters. let old = self.ptr.swap(new, Ordering::SeqCst); unsafe { self.strategy.wait_for_readers(old, &self.ptr); T::from_ptr(old) } } /// Swaps the stored Arc if it equals to `current`. /// /// If the current value of the `ArcSwapAny` equals to `current`, the `new` is stored inside. /// If not, nothing happens. /// /// The previous value (no matter if the swap happened or not) is returned. Therefore, if the /// returned value is equal to `current`, the swap happened. You want to do a pointer-based /// comparison to determine it. /// /// In other words, if the caller „guesses“ the value of current correctly, it acts like /// [`swap`](#method.swap), otherwise it acts like [`load_full`](#method.load_full) (including /// the limitations). /// /// The `current` can be specified as `&Arc`, [`Guard`](struct.Guard.html), /// [`&Guards`](struct.Guards.html) or as a raw pointer. pub fn compare_and_swap<C>(&self, current: C, new: T) -> Guard<T, S> where C: AsRaw<T::Base>, S: CaS<T>, { let protected = unsafe { self.strategy.compare_and_swap(&self.ptr, current, new) }; Guard { inner: protected } } /// Read-Copy-Update of the pointer inside. /// /// This is useful in read-heavy situations with several threads that sometimes update the data /// pointed to. The readers can just repeatedly use [`load`](#method.load) without any locking. /// The writer uses this method to perform the update. /// /// In case there's only one thread that does updates or in case the next version is /// independent of the previous one, simple [`swap`](#method.swap) or [`store`](#method.store) /// is enough. Otherwise, it may be needed to retry the update operation if some other thread /// made an update in between. This is what this method does. /// /// # Examples /// /// This will *not* work as expected, because between loading and storing, some other thread /// might have updated the value. /// /// ```rust /// # use std::sync::Arc; /// # /// # use arc_swap::ArcSwap; /// # use crossbeam_utils::thread; /// # /// let cnt = ArcSwap::from_pointee(0); /// thread::scope(|scope| { /// for _ in 0..10 { /// scope.spawn(|_| { /// let inner = cnt.load_full(); /// // Another thread might have stored some other number than what we have /// // between the load and store. /// cnt.store(Arc::new(*inner + 1)); /// }); /// } /// }).unwrap(); /// // This will likely fail: /// // assert_eq!(10, *cnt.load_full()); /// ``` /// /// This will, but it can call the closure multiple times to retry: /// /// ```rust /// # use arc_swap::ArcSwap; /// # use crossbeam_utils::thread; /// # /// let cnt = ArcSwap::from_pointee(0); /// thread::scope(|scope| { /// for _ in 0..10 { /// scope.spawn(|_| cnt.rcu(|inner| **inner + 1)); /// } /// }).unwrap(); /// assert_eq!(10, *cnt.load_full()); /// ``` /// /// Due to the retries, you might want to perform all the expensive operations *before* the /// rcu. As an example, if there's a cache of some computations as a map, and the map is cheap /// to clone but the computations are not, you could do something like this: /// /// ```rust /// # use std::collections::HashMap; /// # /// # use arc_swap::ArcSwap; /// # use once_cell::sync::Lazy; /// # /// fn expensive_computation(x: usize) -> usize { /// x * 2 // Let's pretend multiplication is *really expensive expensive* /// } /// /// type Cache = HashMap<usize, usize>; /// /// static CACHE: Lazy<ArcSwap<Cache>> = Lazy::new(|| ArcSwap::default()); /// /// fn cached_computation(x: usize) -> usize { /// let cache = CACHE.load(); /// if let Some(result) = cache.get(&x) { /// return *result; /// } /// // Not in cache. Compute and store. /// // The expensive computation goes outside, so it is not retried. /// let result = expensive_computation(x); /// CACHE.rcu(|cache| { /// // The cheaper clone of the cache can be retried if need be. /// let mut cache = HashMap::clone(&cache); /// cache.insert(x, result); /// cache /// }); /// result /// } /// /// assert_eq!(42, cached_computation(21)); /// assert_eq!(42, cached_computation(21)); /// ``` /// /// # The cost of cloning /// /// Depending on the size of cache above, the cloning might not be as cheap. You can however /// use persistent data structures ‒ each modification creates a new data structure, but it /// shares most of the data with the old one (which is usually accomplished by using `Arc`s /// inside to share the unchanged values). Something like /// [`rpds`](https://crates.io/crates/rpds) or [`im`](https://crates.io/crates/im) might do /// what you need. pub fn rcu<R, F>(&self, mut f: F) -> T where F: FnMut(&T) -> R, R: Into<T>, S: CaS<T>, { let mut cur = self.load(); loop { let new = f(&cur).into(); let prev = self.compare_and_swap(&*cur, new); let swapped = ptr_eq(&*cur, &*prev); if swapped { return Guard::into_inner(prev); } else { cur = prev; } } } /// Provides an access to an up to date projection of the carried data. /// /// # Motivation /// /// Sometimes, an application consists of components. Each component has its own configuration /// structure. The whole configuration contains all the smaller config parts. /// /// For the sake of separation and abstraction, it is not desirable to pass the whole /// configuration to each of the components. This allows the component to take only access to /// its own part. /// /// # Lifetimes & flexibility /// /// This method is not the most flexible way, as the returned type borrows into the `ArcSwap`. /// To provide access into eg. `Arc<ArcSwap<T>>`, you can create the [`Map`] type directly. See /// the [`access`] module. /// /// # Performance /// /// As the provided function is called on each load from the shared storage, it should /// generally be cheap. It is expected this will usually be just referencing of a field inside /// the structure. /// /// # Examples /// /// ```rust /// use std::sync::Arc; /// /// use arc_swap::ArcSwap; /// use arc_swap::access::Access; /// /// struct Cfg { /// value: usize, /// } /// /// fn print_many_times<V: Access<usize>>(value: V) { /// for _ in 0..25 { /// let value = value.load(); /// println!("{}", *value); /// } /// } /// /// let shared = ArcSwap::from_pointee(Cfg { value: 0 }); /// let mapped = shared.map(|c: &Cfg| &c.value); /// crossbeam_utils::thread::scope(|s| { /// // Will print some zeroes and some twos /// s.spawn(|_| print_many_times(mapped)); /// s.spawn(|_| shared.store(Arc::new(Cfg { value: 2 }))); /// }).expect("Something panicked in a thread"); /// ``` pub fn map<I, R, F>(&self, f: F) -> Map<&Self, I, F> where F: Fn(&I) -> &R + Clone, Self: Access<I>, { Map::new(self, f) } } /// An atomic storage for `Arc`. /// /// This is a type alias only. Most of its methods are described on /// [`ArcSwapAny`](struct.ArcSwapAny.html). pub type ArcSwap<T> = ArcSwapAny<Arc<T>>; impl<T, S: Strategy<Arc<T>>> ArcSwapAny<Arc<T>, S> { /// A convenience constructor directly from the pointed-to value. /// /// Direct equivalent for `ArcSwap::new(Arc::new(val))`. pub fn from_pointee(val: T) -> Self where S: Default, { Self::from(Arc::new(val)) } } /// An atomic storage for `Option<Arc>`. /// /// This is very similar to [`ArcSwap`](type.ArcSwap.html), but allows storing NULL values, which /// is useful in some situations. /// /// This is a type alias only. Most of the methods are described on /// [`ArcSwapAny`](struct.ArcSwapAny.html). Even though the examples there often use `ArcSwap`, /// they are applicable to `ArcSwapOption` with appropriate changes. /// /// # Examples /// /// ``` /// use std::sync::Arc; /// use arc_swap::ArcSwapOption; /// /// let shared = ArcSwapOption::from(None); /// assert!(shared.load_full().is_none()); /// assert!(shared.swap(Some(Arc::new(42))).is_none()); /// assert_eq!(42, **shared.load_full().as_ref().unwrap()); /// ``` pub type ArcSwapOption<T> = ArcSwapAny<Option<Arc<T>>>; impl<T, S: Strategy<Option<Arc<T>>>> ArcSwapAny<Option<Arc<T>>, S> { /// A convenience constructor directly from a pointed-to value. /// /// This just allocates the `Arc` under the hood. /// /// # Examples /// /// ```rust /// use arc_swap::ArcSwapOption; /// /// let empty: ArcSwapOption<usize> = ArcSwapOption::from_pointee(None); /// assert!(empty.load().is_none()); /// let non_empty: ArcSwapOption<usize> = ArcSwapOption::from_pointee(42); /// assert_eq!(42, **non_empty.load().as_ref().unwrap()); /// ``` pub fn from_pointee<V: Into<Option<T>>>(val: V) -> Self where S: Default, { Self::new(val.into().map(Arc::new)) } /// A convenience constructor for an empty value. /// /// This is equivalent to `ArcSwapOption::new(None)`. pub fn empty() -> Self where S: Default, { Self::new(None) } } /// An atomic storage that doesn't share the internal generation locks with others. /// /// This makes it bigger and it also might suffer contention (on the HW level) if used from many /// threads at once. On the other hand, it can't block writes in other instances. /// /// See the [`IndependentStrategy`] for further details. // Being phased out. Will deprecate once we verify in production that the new strategy works fine. #[doc(hidden)] pub type IndependentArcSwap<T> = ArcSwapAny<Arc<T>, IndependentStrategy>; /// Arc swap for the [Weak] pointer. /// /// This is similar to [ArcSwap], but it doesn't store [Arc], it stores [Weak]. It doesn't keep the /// data alive when pointed to. /// /// This is a type alias only. Most of the methods are described on the /// [`ArcSwapAny`](struct.ArcSwapAny.html). /// /// Needs the `weak` feature turned on. /// /// [Weak]: std::sync::Weak #[cfg(feature = "weak")] pub type ArcSwapWeak<T> = ArcSwapAny<std::sync::Weak<T>>; macro_rules! t { ($name: ident, $strategy: ty) => { #[cfg(test)] mod $name { use std::panic; use std::sync::atomic::{self, AtomicUsize}; use adaptive_barrier::{Barrier, PanicMode}; use crossbeam_utils::thread; use super::*; const ITERATIONS: usize = 10; #[allow(deprecated)] // We use "deprecated" testing strategies in here. type AS<T> = ArcSwapAny<Arc<T>, $strategy>; #[allow(deprecated)] // We use "deprecated" testing strategies in here. type ASO<T> = ArcSwapAny<Option<Arc<T>>, $strategy>; /// Similar to the one in doc tests of the lib, but more times and more intensive (we /// want to torture it a bit). #[test] #[cfg_attr(miri, ignore)] // Takes like 1 or 2 infinities to run under miri fn publish() { const READERS: usize = 2; for _ in 0..ITERATIONS { let config = AS::<String>::default(); let ended = AtomicUsize::new(0); thread::scope(|scope| { for _ in 0..READERS { scope.spawn(|_| loop { let cfg = config.load_full(); if !cfg.is_empty() { assert_eq!(*cfg, "New configuration"); ended.fetch_add(1, Ordering::Relaxed); return; } atomic::spin_loop_hint(); }); } scope.spawn(|_| { let new_conf = Arc::new("New configuration".to_owned()); config.store(new_conf); }); }) .unwrap(); assert_eq!(READERS, ended.load(Ordering::Relaxed)); let arc = config.load_full(); assert_eq!(2, Arc::strong_count(&arc)); assert_eq!(0, Arc::weak_count(&arc)); } } /// Similar to the doc tests of ArcSwap, but happens more times. #[test] fn swap_load() { for _ in 0..100 { let arc = Arc::new(42); let arc_swap = AS::from(Arc::clone(&arc)); assert_eq!(42, **arc_swap.load()); // It can be read multiple times assert_eq!(42, **arc_swap.load()); // Put a new one in there let new_arc = Arc::new(0); assert_eq!(42, *arc_swap.swap(Arc::clone(&new_arc))); assert_eq!(0, **arc_swap.load()); // One loaded here, one in the arc_swap, one in new_arc let loaded = arc_swap.load_full(); assert_eq!(3, Arc::strong_count(&loaded)); assert_eq!(0, Arc::weak_count(&loaded)); // The original got released from the arc_swap assert_eq!(1, Arc::strong_count(&arc)); assert_eq!(0, Arc::weak_count(&arc)); } } /// Two different writers publish two series of values. The readers check that it is /// always increasing in each serie. /// /// For performance, we try to reuse the threads here. #[test] fn multi_writers() { let first_value = Arc::new((0, 0)); let shared = AS::from(Arc::clone(&first_value)); const WRITER_CNT: usize = 2; const READER_CNT: usize = 3; #[cfg(miri)] const ITERATIONS: usize = 10; #[cfg(not(miri))] const ITERATIONS: usize = 100; const SEQ: usize = 50; let barrier = Barrier::new(PanicMode::Poison); thread::scope(|scope| { for w in 0..WRITER_CNT { // We need to move w into the closure. But we want to just reference the // other things. let mut barrier = barrier.clone(); let shared = &shared; let first_value = &first_value; scope.spawn(move |_| { for _ in 0..ITERATIONS { barrier.wait(); shared.store(Arc::clone(&first_value)); barrier.wait(); for i in 0..SEQ { shared.store(Arc::new((w, i + 1))); } } }); } for _ in 0..READER_CNT { let mut barrier = barrier.clone(); let shared = &shared; let first_value = &first_value; scope.spawn(move |_| { for _ in 0..ITERATIONS { barrier.wait(); barrier.wait(); let mut previous = [0; WRITER_CNT]; let mut last = Arc::clone(&first_value); loop { let cur = shared.load(); if Arc::ptr_eq(&last, &cur) { atomic::spin_loop_hint(); continue; } let (w, s) = **cur; assert!(previous[w] < s, "{:?} vs {:?}", previous, cur); previous[w] = s; last = Guard::into_inner(cur); if s == SEQ { break; } } } }); } drop(barrier); }) .unwrap(); } #[test] fn load_null() { let shared = ASO::<usize>::default(); let guard = shared.load(); assert!(guard.is_none()); shared.store(Some(Arc::new(42))); assert_eq!(42, **shared.load().as_ref().unwrap()); } #[test] fn from_into() { let a = Arc::new(42); let shared = AS::new(a); let guard = shared.load(); let a = shared.into_inner(); assert_eq!(42, *a); assert_eq!(2, Arc::strong_count(&a)); drop(guard); assert_eq!(1, Arc::strong_count(&a)); } // Note on the Relaxed order here. This should be enough, because there's that // barrier.wait in between that should do the synchronization of happens-before for us. // And using SeqCst would probably not help either, as there's nothing else with SeqCst // here in this test to relate it to. #[derive(Default)] struct ReportDrop(Arc<AtomicUsize>); impl Drop for ReportDrop { fn drop(&mut self) { self.0.fetch_add(1, Ordering::Relaxed); } } /// Interaction of two threads about a guard and dropping it. /// /// We make sure everything works in timely manner (eg. dropping of stuff) even if multiple /// threads interact. /// /// The idea is: /// * Thread 1 loads a value. /// * Thread 2 replaces the shared value. The original value is not destroyed. /// * Thread 1 drops the guard. The value is destroyed and this is observable in both threads. #[test] fn guard_drop_in_thread() { for _ in 0..ITERATIONS { let cnt = Arc::new(AtomicUsize::new(0)); let shared = AS::from_pointee(ReportDrop(cnt.clone())); assert_eq!(cnt.load(Ordering::Relaxed), 0, "Dropped prematurely"); // We need the threads to wait for each other at places. let sync = Barrier::new(PanicMode::Poison); thread::scope(|scope| { scope.spawn({ let sync = sync.clone(); |_| { let mut sync = sync; // Move into the closure let guard = shared.load(); sync.wait(); // Thread 2 replaces the shared value. We wait for it to confirm. sync.wait(); drop(guard); assert_eq!(cnt.load(Ordering::Relaxed), 1, "Value not dropped"); // Let thread 2 know we already dropped it. sync.wait(); } }); scope.spawn(|_| { let mut sync = sync; // Thread 1 loads, we wait for that sync.wait(); shared.store(Default::default()); assert_eq!( cnt.load(Ordering::Relaxed), 0, "Dropped while still in use" ); // Let thread 2 know we replaced it sync.wait(); // Thread 1 drops its guard. We wait for it to confirm. sync.wait(); assert_eq!(cnt.load(Ordering::Relaxed), 1, "Value not dropped"); }); }) .unwrap(); } } /// Check dropping a lease in a different thread than it was created doesn't cause any /// problems. #[test] fn guard_drop_in_another_thread() { for _ in 0..ITERATIONS { let cnt = Arc::new(AtomicUsize::new(0)); let shared = AS::from_pointee(ReportDrop(cnt.clone())); assert_eq!(cnt.load(Ordering::Relaxed), 0, "Dropped prematurely"); let guard = shared.load(); drop(shared); assert_eq!(cnt.load(Ordering::Relaxed), 0, "Dropped prematurely"); thread::scope(|scope| { scope.spawn(|_| { drop(guard); }); }) .unwrap(); assert_eq!(cnt.load(Ordering::Relaxed), 1, "Not dropped"); } } #[test] fn load_option() { let shared = ASO::from_pointee(42); // The type here is not needed in real code, it's just addition test the type matches. let opt: Option<_> = Guard::into_inner(shared.load()); assert_eq!(42, *opt.unwrap()); shared.store(None); assert!(shared.load().is_none()); } // Check stuff can get formatted #[test] fn debug_impl() { let shared = AS::from_pointee(42); assert_eq!("ArcSwapAny(42)", &format!("{:?}", shared)); assert_eq!("42", &format!("{:?}", shared.load())); } #[test] fn display_impl() { let shared = AS::from_pointee(42); assert_eq!("42", &format!("{}", shared)); assert_eq!("42", &format!("{}", shared.load())); } // The following "tests" are not run, only compiled. They check that things that should be // Send/Sync actually are. fn _check_stuff_is_send_sync() { let shared = AS::from_pointee(42); let moved = AS::from_pointee(42); let shared_ref = &shared; let lease = shared.load(); let lease_ref = &lease; let lease = shared.load(); thread::scope(|s| { s.spawn(move |_| { let _ = lease; let _ = lease_ref; let _ = shared_ref; let _ = moved; }); }) .unwrap(); } /// We have a callback in RCU. Check what happens if we access the value from within. #[test] fn recursive() { let shared = ArcSwap::from(Arc::new(0)); shared.rcu(|i| { if **i < 10 { shared.rcu(|i| **i + 1); } **i }); assert_eq!(10, **shared.load()); assert_eq!(2, Arc::strong_count(&shared.load_full())); } /// A panic from within the rcu callback should not change anything. #[test] fn rcu_panic() { let shared = ArcSwap::from(Arc::new(0)); assert!(panic::catch_unwind(|| shared.rcu(|_| -> usize { panic!() })).is_err()); assert_eq!(1, Arc::strong_count(&shared.swap(Arc::new(42)))); } /// Handling null/none values #[test] fn nulls() { let shared = ArcSwapOption::from(Some(Arc::new(0))); let orig = shared.swap(None); assert_eq!(1, Arc::strong_count(&orig.unwrap())); let null = shared.load(); assert!(null.is_none()); let a = Arc::new(42); let orig = shared.compare_and_swap(ptr::null(), Some(Arc::clone(&a))); assert!(orig.is_none()); assert_eq!(2, Arc::strong_count(&a)); let orig = Guard::into_inner(shared.compare_and_swap(&None::<Arc<_>>, None)); assert_eq!(3, Arc::strong_count(&a)); assert!(ptr_eq(&a, &orig)); } #[test] /// Multiple RCUs interacting. fn rcu() { const ITERATIONS: usize = 50; const THREADS: usize = 10; let shared = ArcSwap::from(Arc::new(0)); thread::scope(|scope| { for _ in 0..THREADS { scope.spawn(|_| { for _ in 0..ITERATIONS { shared.rcu(|old| **old + 1); } }); } }) .unwrap(); assert_eq!(THREADS * ITERATIONS, **shared.load()); } #[test] /// Make sure the reference count and compare_and_swap works as expected. fn cas_ref_cnt() { const ITERATIONS: usize = 50; let shared = ArcSwap::from(Arc::new(0)); for i in 0..ITERATIONS { let orig = shared.load_full(); assert_eq!(i, *orig); if i % 2 == 1 { // One for orig, one for shared assert_eq!(2, Arc::strong_count(&orig)); } let n1 = Arc::new(i + 1); // Fill up the slots sometimes let fillup = || { if i % 2 == 0 { Some((0..50).map(|_| shared.load()).collect::<Vec<_>>()) } else { None } }; let guards = fillup(); // Success let prev = shared.compare_and_swap(&orig, Arc::clone(&n1)); assert!(ptr_eq(&orig, &prev)); drop(guards); // One for orig, one for prev assert_eq!(2, Arc::strong_count(&orig)); // One for n1, one for shared assert_eq!(2, Arc::strong_count(&n1)); assert_eq!(i + 1, **shared.load()); let n2 = Arc::new(i); drop(prev); let guards = fillup(); // Failure let prev = Guard::into_inner(shared.compare_and_swap(&orig, Arc::clone(&n2))); drop(guards); assert!(ptr_eq(&n1, &prev)); // One for orig assert_eq!(1, Arc::strong_count(&orig)); // One for n1, one for shared, one for prev assert_eq!(3, Arc::strong_count(&n1)); // n2 didn't get increased assert_eq!(1, Arc::strong_count(&n2)); assert_eq!(i + 1, **shared.load()); } let a = shared.load_full(); // One inside shared, one for a assert_eq!(2, Arc::strong_count(&a)); drop(shared); // Only a now assert_eq!(1, Arc::strong_count(&a)); } } }; } t!(tests_default, DefaultStrategy); #[cfg(feature = "internal-test-strategies")] #[allow(deprecated)] t!( tests_full_slots, crate::strategy::test_strategies::FillFastSlots ); /// These tests assume details about the used strategy. #[cfg(test)] mod tests { use super::*; /// Accessing the value inside ArcSwap with Guards (and checks for the reference /// counts). #[test] fn load_cnt() { let a = Arc::new(0); let shared = ArcSwap::from(Arc::clone(&a)); // One in shared, one in a assert_eq!(2, Arc::strong_count(&a)); let guard = shared.load(); assert_eq!(0, **guard); // The guard doesn't have its own ref count now assert_eq!(2, Arc::strong_count(&a)); let guard_2 = shared.load(); // Unlike with guard, this does not deadlock shared.store(Arc::new(1)); // But now, each guard got a full Arc inside it assert_eq!(3, Arc::strong_count(&a)); // And when we get rid of them, they disappear drop(guard_2); assert_eq!(2, Arc::strong_count(&a)); let _b = Arc::clone(&guard); assert_eq!(3, Arc::strong_count(&a)); // We can drop the guard it came from drop(guard); assert_eq!(2, Arc::strong_count(&a)); let guard = shared.load(); assert_eq!(1, **guard); drop(shared); // We can still use the guard after the shared disappears assert_eq!(1, **guard); let ptr = Arc::clone(&guard); // One in shared, one in guard assert_eq!(2, Arc::strong_count(&ptr)); drop(guard); assert_eq!(1, Arc::strong_count(&ptr)); } /// There can be only limited amount of leases on one thread. Following ones are /// created, but contain full Arcs. #[test] fn lease_overflow() { let a = Arc::new(0); let shared = ArcSwap::from(Arc::clone(&a)); assert_eq!(2, Arc::strong_count(&a)); let mut guards = (0..1000).map(|_| shared.load()).collect::<Vec<_>>(); let count = Arc::strong_count(&a); assert!(count > 2); let guard = shared.load(); assert_eq!(count + 1, Arc::strong_count(&a)); drop(guard); assert_eq!(count, Arc::strong_count(&a)); // When we delete the first one, it didn't have an Arc in it, so the ref count // doesn't drop guards.swap_remove(0); assert_eq!(count, Arc::strong_count(&a)); // But new one reuses now vacant the slot and doesn't create a new Arc let _guard = shared.load(); assert_eq!(count, Arc::strong_count(&a)); } }