1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
use event_listener::Event; use crate::Mutex; /// A counter to synchronize multiple tasks at the same time. #[derive(Debug)] pub struct Barrier { n: usize, state: Mutex<State>, event: Event, } #[derive(Debug)] struct State { count: usize, generation_id: u64, } impl Barrier { /// Creates a barrier that can block the given number of tasks. /// /// A barrier will block `n`-1 tasks which call [`wait()`] and then wake up all tasks /// at once when the `n`th task calls [`wait()`]. /// /// [`wait()`]: `Barrier::wait()` /// /// # Examples /// /// ``` /// use async_lock::Barrier; /// /// let barrier = Barrier::new(5); /// ``` pub const fn new(n: usize) -> Barrier { Barrier { n, state: Mutex::new(State { count: 0, generation_id: 0, }), event: Event::new(), } } /// Blocks the current task until all tasks reach this point. /// /// Barriers are reusable after all tasks have synchronized, and can be used continuously. /// /// Returns a [`BarrierWaitResult`] indicating whether this task is the "leader", meaning the /// last task to call this method. /// /// # Examples /// /// ``` /// use async_lock::Barrier; /// use futures_lite::future; /// use std::sync::Arc; /// use std::thread; /// /// let barrier = Arc::new(Barrier::new(5)); /// /// for _ in 0..5 { /// let b = barrier.clone(); /// thread::spawn(move || { /// future::block_on(async { /// // The same messages will be printed together. /// // There will NOT be interleaving of "before" and "after". /// println!("before wait"); /// b.wait().await; /// println!("after wait"); /// }); /// }); /// } /// ``` pub async fn wait(&self) -> BarrierWaitResult { let mut state = self.state.lock().await; let local_gen = state.generation_id; state.count += 1; if state.count < self.n { while local_gen == state.generation_id && state.count < self.n { let listener = self.event.listen(); drop(state); listener.await; state = self.state.lock().await; } BarrierWaitResult { is_leader: false } } else { state.count = 0; state.generation_id = state.generation_id.wrapping_add(1); self.event.notify(std::usize::MAX); BarrierWaitResult { is_leader: true } } } } /// Returned by [`Barrier::wait()`] when all tasks have called it. /// /// # Examples /// /// ``` /// # futures_lite::future::block_on(async { /// use async_lock::Barrier; /// /// let barrier = Barrier::new(1); /// let barrier_wait_result = barrier.wait().await; /// # }); /// ``` #[derive(Debug, Clone)] pub struct BarrierWaitResult { is_leader: bool, } impl BarrierWaitResult { /// Returns `true` if this task was the last to call to [`Barrier::wait()`]. /// /// # Examples /// /// ``` /// # futures_lite::future::block_on(async { /// use async_lock::Barrier; /// use futures_lite::future; /// /// let barrier = Barrier::new(2); /// let (a, b) = future::zip(barrier.wait(), barrier.wait()).await; /// assert_eq!(a.is_leader(), false); /// assert_eq!(b.is_leader(), true); /// # }); /// ``` pub fn is_leader(&self) -> bool { self.is_leader } }