1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
//! Async interface for working with processes.
//!
//! This crate is an async version of [`std::process`].
//!
//! # Implementation
//!
//! A background thread named "async-process" is lazily created on first use, which waits for
//! spawned child processes to exit and then calls the `wait()` syscall to clean up the "zombie"
//! processes. This is unlike the `process` API in the standard library, where dropping a running
//! `Child` leaks its resources.
//!
//! This crate uses [`async-io`] for async I/O on Unix-like systems and [`blocking`] for async I/O
//! on Windows.
//!
//! [`async-io`]: https://docs.rs/async-io
//! [`blocking`]: https://docs.rs/blocking
//!
//! # Examples
//!
//! Spawn a process and collect its output:
//!
//! ```no_run
//! # futures_lite::future::block_on(async {
//! use async_process::Command;
//!
//! let out = Command::new("echo").arg("hello").arg("world").output().await?;
//! assert_eq!(out.stdout, b"hello world\n");
//! # std::io::Result::Ok(()) });
//! ```
//!
//! Read the output line-by-line as it gets produced:
//!
//! ```no_run
//! # futures_lite::future::block_on(async {
//! use async_process::{Command, Stdio};
//! use futures_lite::{io::BufReader, prelude::*};
//!
//! let mut child = Command::new("find")
//!     .arg(".")
//!     .stdout(Stdio::piped())
//!     .spawn()?;
//!
//! let mut lines = BufReader::new(child.stdout.take().unwrap()).lines();
//!
//! while let Some(line) = lines.next().await {
//!     println!("{}", line?);
//! }
//! # std::io::Result::Ok(()) });
//! ```

#![warn(missing_docs, missing_debug_implementations, rust_2018_idioms)]

use std::ffi::OsStr;
use std::fmt;
use std::path::Path;
use std::pin::Pin;
use std::sync::{Arc, Mutex};
use std::task::{Context, Poll};
use std::thread;

#[cfg(unix)]
use async_io::Async;
#[cfg(windows)]
use blocking::Unblock;
use event_listener::Event;
use futures_lite::{future, io, prelude::*};
use once_cell::sync::Lazy;

#[doc(no_inline)]
pub use std::process::{ExitStatus, Output, Stdio};

#[cfg(unix)]
pub mod unix;
#[cfg(windows)]
pub mod windows;

/// An event delivered every time the SIGCHLD signal occurs.
static SIGCHLD: Event = Event::new();

/// A guard that can kill child processes, or push them into the zombie list.
struct ChildGuard {
    inner: Option<std::process::Child>,
    reap_on_drop: bool,
    kill_on_drop: bool,
}

impl ChildGuard {
    fn get_mut(&mut self) -> &mut std::process::Child {
        self.inner.as_mut().unwrap()
    }
}

/// A spawned child process.
///
/// The process can be in running or exited state. Use [`status()`][`Child::status()`] or
/// [`output()`][`Child::output()`] to wait for it to exit.
///
/// If the [`Child`] is dropped, the process keeps running in the background.
///
/// # Examples
///
/// Spawn a process and wait for it to complete:
///
/// ```no_run
/// # futures_lite::future::block_on(async {
/// use async_process::Command;
///
/// Command::new("cp").arg("a.txt").arg("b.txt").status().await?;
/// # std::io::Result::Ok(()) });
/// ```
pub struct Child {
    /// The handle for writing to the child's standard input (stdin), if it has been captured.
    pub stdin: Option<ChildStdin>,

    /// The handle for reading from the child's standard output (stdout), if it has been captured.
    pub stdout: Option<ChildStdout>,

    /// The handle for reading from the child's standard error (stderr), if it has been captured.
    pub stderr: Option<ChildStderr>,

    /// The inner child process handle.
    child: Arc<Mutex<ChildGuard>>,
}

impl Child {
    /// Wraps the inner child process handle and registers it in the global process list.
    ///
    /// The "async-process" thread waits for processes in the global list and cleans up the
    /// resources when they exit.
    fn new(cmd: &mut Command) -> io::Result<Child> {
        let mut child = cmd.inner.spawn()?;

        // Convert sync I/O types into async I/O types.
        let stdin = child.stdin.take().map(wrap).transpose()?.map(ChildStdin);
        let stdout = child.stdout.take().map(wrap).transpose()?.map(ChildStdout);
        let stderr = child.stderr.take().map(wrap).transpose()?.map(ChildStderr);

        cfg_if::cfg_if! {
            if #[cfg(windows)] {
                use std::os::windows::io::AsRawHandle;
                use std::sync::mpsc;

                use winapi::um::{
                    winbase::{RegisterWaitForSingleObject, INFINITE},
                    winnt::{BOOLEAN, HANDLE, PVOID, WT_EXECUTEINWAITTHREAD, WT_EXECUTEONLYONCE},
                };

                // This channel is used to simulate SIGCHLD on Windows.
                static CALLBACK: Lazy<(mpsc::SyncSender<()>, Mutex<mpsc::Receiver<()>>)> =
                    Lazy::new(|| {
                        let (s, r) = mpsc::sync_channel(1);
                        (s, Mutex::new(r))
                    });

                // Called when a child exits.
                unsafe extern "system" fn callback(_: PVOID, _: BOOLEAN) {
                    CALLBACK.0.try_send(()).ok();
                }

                // Register this child process to invoke `callback` on exit.
                let mut wait_object = std::ptr::null_mut();
                let ret = unsafe {
                    RegisterWaitForSingleObject(
                        &mut wait_object,
                        child.as_raw_handle() as HANDLE,
                        Some(callback),
                        std::ptr::null_mut(),
                        INFINITE,
                        WT_EXECUTEINWAITTHREAD | WT_EXECUTEONLYONCE,
                    )
                };
                if ret == 0 {
                    return Err(io::Error::last_os_error());
                }

                // Waits for the next SIGCHLD signal.
                fn wait_sigchld() {
                    CALLBACK.1.lock().unwrap().recv().ok();
                }

                // Wraps a sync I/O type into an async I/O type.
                fn wrap<T>(io: T) -> io::Result<Unblock<T>> {
                    Ok(Unblock::new(io))
                }

            } else if #[cfg(unix)] {
                static SIGNALS: Lazy<Mutex<signal_hook::iterator::Signals>> = Lazy::new(|| {
                    Mutex::new(
                        signal_hook::iterator::Signals::new(&[signal_hook::consts::SIGCHLD])
                            .expect("cannot set signal handler for SIGCHLD"),
                    )
                });

                // Make sure the signal handler is registered before interacting with the process.
                Lazy::force(&SIGNALS);

                // Waits for the next SIGCHLD signal.
                fn wait_sigchld() {
                    SIGNALS.lock().unwrap().forever().next();
                }

                // Wraps a sync I/O type into an async I/O type.
                fn wrap<T: std::os::unix::io::AsRawFd>(io: T) -> io::Result<Async<T>> {
                    Async::new(io)
                }
            }
        }

        static ZOMBIES: Lazy<Mutex<Vec<std::process::Child>>> = Lazy::new(|| {
            // Start a thread that handles SIGCHLD and notifies tasks when child processes exit.
            thread::Builder::new()
                .name("async-process".to_string())
                .spawn(move || {
                    loop {
                        // Wait for the next SIGCHLD signal.
                        wait_sigchld();

                        // Notify all listeners waiting on the SIGCHLD event.
                        SIGCHLD.notify(std::usize::MAX);

                        // Reap zombie processes.
                        let mut zombies = ZOMBIES.lock().unwrap();
                        let mut i = 0;
                        while i < zombies.len() {
                            if let Ok(None) = zombies[i].try_wait() {
                                i += 1;
                            } else {
                                zombies.swap_remove(i);
                            }
                        }
                    }
                })
                .expect("cannot spawn async-process thread");

            Mutex::new(Vec::new())
        });

        // Make sure the thread is started.
        Lazy::force(&ZOMBIES);

        // When the last reference to the child process is dropped, push it into the zombie list.
        impl Drop for ChildGuard {
            fn drop(&mut self) {
                if self.kill_on_drop {
                    self.get_mut().kill().ok();
                }
                if self.reap_on_drop {
                    let mut zombies = ZOMBIES.lock().unwrap();
                    if let Ok(None) = self.get_mut().try_wait() {
                        zombies.push(self.inner.take().unwrap());
                    }
                }
            }
        }

        Ok(Child {
            stdin,
            stdout,
            stderr,
            child: Arc::new(Mutex::new(ChildGuard {
                inner: Some(child),
                reap_on_drop: cmd.reap_on_drop,
                kill_on_drop: cmd.kill_on_drop,
            })),
        })
    }

    /// Returns the OS-assigned process identifier associated with this child.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// # futures_lite::future::block_on(async {
    /// use async_process::Command;
    ///
    /// let mut child = Command::new("ls").spawn()?;
    /// println!("id: {}", child.id());
    /// # std::io::Result::Ok(()) });
    /// ```
    pub fn id(&self) -> u32 {
        self.child.lock().unwrap().get_mut().id()
    }

    /// Forces the child process to exit.
    ///
    /// If the child has already exited, an [`InvalidInput`] error is returned.
    ///
    /// This is equivalent to sending a SIGKILL on Unix platforms.
    ///
    /// [`InvalidInput`]: `std::io::ErrorKind::InvalidInput`
    ///
    /// # Examples
    ///
    /// ```no_run
    /// # futures_lite::future::block_on(async {
    /// use async_process::Command;
    ///
    /// let mut child = Command::new("yes").spawn()?;
    /// child.kill()?;
    /// println!("exit status: {}", child.status().await?);
    /// # std::io::Result::Ok(()) });
    /// ```
    pub fn kill(&mut self) -> io::Result<()> {
        self.child.lock().unwrap().get_mut().kill()
    }

    /// Returns the exit status if the process has exited.
    ///
    /// Unlike [`status()`][`Child::status()`], this method will not drop the stdin handle.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// # futures_lite::future::block_on(async {
    /// use async_process::Command;
    ///
    /// let mut child = Command::new("ls").spawn()?;
    ///
    /// match child.try_status()? {
    ///     None => println!("still running"),
    ///     Some(status) => println!("exited with: {}", status),
    /// }
    /// # std::io::Result::Ok(()) });
    /// ```
    pub fn try_status(&mut self) -> io::Result<Option<ExitStatus>> {
        self.child.lock().unwrap().get_mut().try_wait()
    }

    /// Drops the stdin handle and waits for the process to exit.
    ///
    /// Closing the stdin of the process helps avoid deadlocks. It ensures that the process does
    /// not block waiting for input from the parent process while the parent waits for the child to
    /// exit.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// # futures_lite::future::block_on(async {
    /// use async_process::{Command, Stdio};
    ///
    /// let mut child = Command::new("cp")
    ///     .arg("a.txt")
    ///     .arg("b.txt")
    ///     .spawn()?;
    ///
    /// println!("exit status: {}", child.status().await?);
    /// # std::io::Result::Ok(()) });
    /// ```
    pub fn status(&mut self) -> impl Future<Output = io::Result<ExitStatus>> {
        self.stdin.take();
        let child = self.child.clone();

        async move {
            let mut listener = None;
            loop {
                if let Some(status) = child.lock().unwrap().get_mut().try_wait()? {
                    return Ok(status);
                }
                match listener.take() {
                    None => listener = Some(SIGCHLD.listen()),
                    Some(listener) => listener.await,
                }
            }
        }
    }

    /// Drops the stdin handle and collects the output of the process.
    ///
    /// Closing the stdin of the process helps avoid deadlocks. It ensures that the process does
    /// not block waiting for input from the parent process while the parent waits for the child to
    /// exit.
    ///
    /// In order to capture the output of the process, [`Command::stdout()`] and
    /// [`Command::stderr()`] must be configured with [`Stdio::piped()`].
    ///
    /// # Examples
    ///
    /// ```no_run
    /// # futures_lite::future::block_on(async {
    /// use async_process::{Command, Stdio};
    ///
    /// let child = Command::new("ls")
    ///     .stdout(Stdio::piped())
    ///     .stderr(Stdio::piped())
    ///     .spawn()?;
    ///
    /// let out = child.output().await?;
    /// # std::io::Result::Ok(()) });
    /// ```
    pub fn output(mut self) -> impl Future<Output = io::Result<Output>> {
        // A future that waits for the exit status.
        let status = self.status();

        // A future that collects stdout.
        let stdout = self.stdout.take();
        let stdout = async move {
            let mut v = Vec::new();
            if let Some(mut s) = stdout {
                s.read_to_end(&mut v).await?;
            }
            io::Result::Ok(v)
        };

        // A future that collects stderr.
        let stderr = self.stderr.take();
        let stderr = async move {
            let mut v = Vec::new();
            if let Some(mut s) = stderr {
                s.read_to_end(&mut v).await?;
            }
            io::Result::Ok(v)
        };

        async move {
            let (stdout, stderr) = future::try_zip(stdout, stderr).await?;
            let status = status.await?;
            Ok(Output {
                status,
                stdout,
                stderr,
            })
        }
    }
}

impl fmt::Debug for Child {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Child")
            .field("stdin", &self.stdin)
            .field("stdout", &self.stdout)
            .field("stderr", &self.stderr)
            .finish()
    }
}

/// A handle to a child process's standard input (stdin).
///
/// When a [`ChildStdin`] is dropped, the underlying handle gets clossed. If the child process was
/// previously blocked on input, it becomes unblocked after dropping.
#[derive(Debug)]
pub struct ChildStdin(
    #[cfg(windows)] Unblock<std::process::ChildStdin>,
    #[cfg(unix)] Async<std::process::ChildStdin>,
);

impl io::AsyncWrite for ChildStdin {
    fn poll_write(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &[u8],
    ) -> Poll<io::Result<usize>> {
        Pin::new(&mut self.0).poll_write(cx, buf)
    }

    fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        Pin::new(&mut self.0).poll_flush(cx)
    }

    fn poll_close(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        Pin::new(&mut self.0).poll_close(cx)
    }
}

/// A handle to a child process's standard output (stdout).
///
/// When a [`ChildStdout`] is dropped, the underlying handle gets closed.
#[derive(Debug)]
pub struct ChildStdout(
    #[cfg(windows)] Unblock<std::process::ChildStdout>,
    #[cfg(unix)] Async<std::process::ChildStdout>,
);

impl io::AsyncRead for ChildStdout {
    fn poll_read(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &mut [u8],
    ) -> Poll<io::Result<usize>> {
        Pin::new(&mut self.0).poll_read(cx, buf)
    }
}

/// A handle to a child process's standard error (stderr).
///
/// When a [`ChildStderr`] is dropped, the underlying handle gets closed.
#[derive(Debug)]
pub struct ChildStderr(
    #[cfg(windows)] Unblock<std::process::ChildStderr>,
    #[cfg(unix)] Async<std::process::ChildStderr>,
);

impl io::AsyncRead for ChildStderr {
    fn poll_read(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &mut [u8],
    ) -> Poll<io::Result<usize>> {
        Pin::new(&mut self.0).poll_read(cx, buf)
    }
}

/// A builder for spawning processes.
///
/// # Examples
///
/// ```no_run
/// # futures_lite::future::block_on(async {
/// use async_process::Command;
///
/// let output = if cfg!(target_os = "windows") {
///     Command::new("cmd").args(&["/C", "echo hello"]).output().await?
/// } else {
///     Command::new("sh").arg("-c").arg("echo hello").output().await?
/// };
/// # std::io::Result::Ok(()) });
/// ```
#[derive(Debug)]
pub struct Command {
    inner: std::process::Command,
    stdin: Option<Stdio>,
    stdout: Option<Stdio>,
    stderr: Option<Stdio>,
    reap_on_drop: bool,
    kill_on_drop: bool,
}

impl Command {
    /// Constructs a new [`Command`] for launching `program`.
    ///
    /// The initial configuration (the working directory and environment variables) is inherited
    /// from the current process.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_process::Command;
    ///
    /// let mut cmd = Command::new("ls");
    /// ```
    pub fn new<S: AsRef<OsStr>>(program: S) -> Command {
        Command {
            inner: std::process::Command::new(program),
            stdin: None,
            stdout: None,
            stderr: None,
            reap_on_drop: true,
            kill_on_drop: false,
        }
    }

    /// Adds a single argument to pass to the program.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_process::Command;
    ///
    /// let mut cmd = Command::new("echo");
    /// cmd.arg("hello");
    /// cmd.arg("world");
    /// ```
    pub fn arg<S: AsRef<OsStr>>(&mut self, arg: S) -> &mut Command {
        self.inner.arg(arg);
        self
    }

    /// Adds multiple arguments to pass to the program.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_process::Command;
    ///
    /// let mut cmd = Command::new("echo");
    /// cmd.args(&["hello", "world"]);
    /// ```
    pub fn args<I, S>(&mut self, args: I) -> &mut Command
    where
        I: IntoIterator<Item = S>,
        S: AsRef<OsStr>,
    {
        self.inner.args(args);
        self
    }

    /// Configures an environment variable for the new process.
    ///
    /// Note that environment variable names are case-insensitive (but case-preserving) on Windows,
    /// and case-sensitive on all other platforms.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_process::Command;
    ///
    /// let mut cmd = Command::new("ls");
    /// cmd.env("PATH", "/bin");
    /// ```
    pub fn env<K, V>(&mut self, key: K, val: V) -> &mut Command
    where
        K: AsRef<OsStr>,
        V: AsRef<OsStr>,
    {
        self.inner.env(key, val);
        self
    }

    /// Configures multiple environment variables for the new process.
    ///
    /// Note that environment variable names are case-insensitive (but case-preserving) on Windows,
    /// and case-sensitive on all other platforms.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_process::Command;
    ///
    /// let mut cmd = Command::new("ls");
    /// cmd.envs(vec![("PATH", "/bin"), ("TERM", "xterm-256color")]);
    /// ```
    pub fn envs<I, K, V>(&mut self, vars: I) -> &mut Command
    where
        I: IntoIterator<Item = (K, V)>,
        K: AsRef<OsStr>,
        V: AsRef<OsStr>,
    {
        self.inner.envs(vars);
        self
    }

    /// Removes an environment variable mapping.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_process::Command;
    ///
    /// let mut cmd = Command::new("ls");
    /// cmd.env_remove("PATH");
    /// ```
    pub fn env_remove<K: AsRef<OsStr>>(&mut self, key: K) -> &mut Command {
        self.inner.env_remove(key);
        self
    }

    /// Removes all environment variable mappings.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_process::Command;
    ///
    /// let mut cmd = Command::new("ls");
    /// cmd.env_clear();
    /// ```
    pub fn env_clear(&mut self) -> &mut Command {
        self.inner.env_clear();
        self
    }

    /// Configures the working directory for the new process.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_process::Command;
    ///
    /// let mut cmd = Command::new("ls");
    /// cmd.current_dir("/");
    /// ```
    pub fn current_dir<P: AsRef<Path>>(&mut self, dir: P) -> &mut Command {
        self.inner.current_dir(dir);
        self
    }

    /// Configures the standard input (stdin) for the new process.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_process::{Command, Stdio};
    ///
    /// let mut cmd = Command::new("cat");
    /// cmd.stdin(Stdio::null());
    /// ```
    pub fn stdin<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command {
        self.stdin = Some(cfg.into());
        self
    }

    /// Configures the standard output (stdout) for the new process.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_process::{Command, Stdio};
    ///
    /// let mut cmd = Command::new("ls");
    /// cmd.stdout(Stdio::piped());
    /// ```
    pub fn stdout<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command {
        self.stdout = Some(cfg.into());
        self
    }

    /// Configures the standard error (stderr) for the new process.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_process::{Command, Stdio};
    ///
    /// let mut cmd = Command::new("ls");
    /// cmd.stderr(Stdio::piped());
    /// ```
    pub fn stderr<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command {
        self.stderr = Some(cfg.into());
        self
    }

    /// Configures whether to reap the zombie process when [`Child`] is dropped.
    ///
    /// When the process finishes, it becomes a "zombie" and some resources associated with it
    /// remain until [`Child::try_status()`], [`Child::status()`], or [`Child::output()`] collects
    /// its exit code.
    ///
    /// If its exit code is never collected, the resources may leak forever. This crate has a
    /// background thread named "async-process" that collects such "zombie" processes and then
    /// "reaps" them, thus preventing the resource leaks.
    ///
    /// The default value of this option is `true`.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_process::{Command, Stdio};
    ///
    /// let mut cmd = Command::new("cat");
    /// cmd.reap_on_drop(false);
    /// ```
    pub fn reap_on_drop(&mut self, reap_on_drop: bool) -> &mut Command {
        self.reap_on_drop = reap_on_drop;
        self
    }

    /// Configures whether to kill the process when [`Child`] is dropped.
    ///
    /// The default value of this option is `false`.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_process::{Command, Stdio};
    ///
    /// let mut cmd = Command::new("cat");
    /// cmd.kill_on_drop(true);
    /// ```
    pub fn kill_on_drop(&mut self, kill_on_drop: bool) -> &mut Command {
        self.kill_on_drop = kill_on_drop;
        self
    }

    /// Executes the command and returns the [`Child`] handle to it.
    ///
    /// If not configured, stdin, stdout and stderr will be set to [`Stdio::inherit()`].
    ///
    /// After spawning the process, stdin, stdout, and stderr become unconfigured again.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// # futures_lite::future::block_on(async {
    /// use async_process::Command;
    ///
    /// let child = Command::new("ls").spawn()?;
    /// # std::io::Result::Ok(()) });
    /// ```
    pub fn spawn(&mut self) -> io::Result<Child> {
        let (stdin, stdout, stderr) = (self.stdin.take(), self.stdout.take(), self.stderr.take());
        self.inner.stdin(stdin.unwrap_or(Stdio::inherit()));
        self.inner.stdout(stdout.unwrap_or(Stdio::inherit()));
        self.inner.stderr(stderr.unwrap_or(Stdio::inherit()));

        Child::new(self)
    }

    /// Executes the command, waits for it to exit, and returns the exit status.
    ///
    /// If not configured, stdin, stdout and stderr will be set to [`Stdio::inherit()`].
    ///
    /// After spawning the process, stdin, stdout, and stderr become unconfigured again.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// # futures_lite::future::block_on(async {
    /// use async_process::Command;
    ///
    /// let status = Command::new("cp")
    ///     .arg("a.txt")
    ///     .arg("b.txt")
    ///     .status()
    ///     .await?;
    /// # std::io::Result::Ok(()) });
    /// ```
    pub fn status(&mut self) -> impl Future<Output = io::Result<ExitStatus>> {
        let child = self.spawn();
        async { child?.status().await }
    }

    /// Executes the command and collects its output.
    ///
    /// If not configured, stdin will be set to [`Stdio::null()`], and stdout and stderr will be
    /// set to [`Stdio::piped()`].
    ///
    /// After spawning the process, stdin, stdout, and stderr become unconfigured again.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// # futures_lite::future::block_on(async {
    /// use async_process::Command;
    ///
    /// let output = Command::new("cat")
    ///     .arg("a.txt")
    ///     .output()
    ///     .await?;
    /// # std::io::Result::Ok(()) });
    /// ```
    pub fn output(&mut self) -> impl Future<Output = io::Result<Output>> {
        let (stdin, stdout, stderr) = (self.stdin.take(), self.stdout.take(), self.stderr.take());
        self.inner.stdin(stdin.unwrap_or(Stdio::null()));
        self.inner.stdout(stdout.unwrap_or(Stdio::piped()));
        self.inner.stderr(stderr.unwrap_or(Stdio::piped()));

        let child = Child::new(self);
        async { child?.output().await }
    }
}