1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
use error::ErrorKind; use failure::Error; use std::fmt; const ENTROPY_OFFSET: usize = 8; /// Determines the number of words that will be present in a [`Mnemonic`][Mnemonic] phrase /// /// Also directly affects the amount of entropy that will be used to create a [`Mnemonic`][Mnemonic], /// and therefore the cryptographic strength of the HD wallet keys/addresses that can be derived from /// it using the [`Seed`][Seed]. /// /// For example, a 12 word mnemonic phrase is essentially a friendly representation of a 128-bit key, /// while a 24 word mnemonic phrase is essentially a 256-bit key. /// /// If you know you want a specific phrase length, you can use the enum variant directly, for example /// `MnemonicType::Words12`. /// /// You can also get a `MnemonicType` that corresponds to one of the standard BIP39 key sizes by /// passing arbitrary `usize` values: /// /// ``` /// use bip39::{MnemonicType}; /// /// let mnemonic_type = MnemonicType::for_key_size(128).unwrap(); /// ``` /// /// [MnemonicType]: ../mnemonic_type/struct.MnemonicType.html /// [Mnemonic]: ../mnemonic/struct.Mnemonic.html /// [Seed]: ../seed/struct.Seed.html /// #[derive(Debug, Copy, Clone)] pub enum MnemonicType { // ... = (entropy_bits << ...) | checksum_bits Words12 = (128 << ENTROPY_OFFSET) | 4, Words15 = (160 << ENTROPY_OFFSET) | 5, Words18 = (192 << ENTROPY_OFFSET) | 6, Words21 = (224 << ENTROPY_OFFSET) | 7, Words24 = (256 << ENTROPY_OFFSET) | 8, } impl MnemonicType { /// Get a `MnemonicType` for a mnemonic phrase with a specific number of words /// /// Specifying a word count not provided for by the BIP39 standard will return an `Error` /// of kind `ErrorKind::InvalidWordLength`. /// /// # Example /// ``` /// use bip39::{MnemonicType}; /// /// let mnemonic_type = MnemonicType::for_word_count(12).unwrap(); /// ``` pub fn for_word_count(size: usize) -> Result<MnemonicType, Error> { let mnemonic_type = match size { 12 => MnemonicType::Words12, 15 => MnemonicType::Words15, 18 => MnemonicType::Words18, 21 => MnemonicType::Words21, 24 => MnemonicType::Words24, _ => Err(ErrorKind::InvalidWordLength(size))? }; Ok(mnemonic_type) } /// Get a `MnemonicType` for a mnemonic phrase representing the given key size as bits /// /// Specifying a key size not provided for by the BIP39 standard will return an `Error` /// of kind `ErrorKind::InvalidKeysize`. /// /// # Example /// ``` /// use bip39::{MnemonicType}; /// /// let mnemonic_type = MnemonicType::for_key_size(128).unwrap(); /// ``` pub fn for_key_size(size: usize) -> Result<MnemonicType, Error> { let mnemonic_type = match size { 128 => MnemonicType::Words12, 160 => MnemonicType::Words15, 192 => MnemonicType::Words18, 224 => MnemonicType::Words21, 256 => MnemonicType::Words24, _ => Err(ErrorKind::InvalidKeysize(size))? }; Ok(mnemonic_type) } /// Get a `MnemonicType` for an existing mnemonic phrase /// /// This can be used when you need information about a mnemonic phrase based on the number of /// words, for example you can get the entropy value using [`MnemonicType::entropy_bits`][MnemonicType::entropy_bits()]. /// /// Specifying a phrase that does not match one of the standard BIP39 phrase lengths will return /// an `Error` of kind `ErrorKind::InvalidWordLength`. The phrase will not be validated in any /// other way. /// /// # Example /// ``` /// use bip39::{MnemonicType}; /// /// let test_mnemonic = "park remain person kitchen mule spell knee armed position rail grid ankle"; /// /// let mnemonic_type = MnemonicType::for_phrase(test_mnemonic).unwrap(); /// /// let entropy_bits = mnemonic_type.entropy_bits(); /// ``` /// /// [MnemonicType::entropy_bits()]: ./enum.MnemonicType.html#method.entropy_bits pub fn for_phrase(phrase: &str) -> Result<MnemonicType, Error> { let word_count = phrase.split(" ").count(); Self::for_word_count(word_count) } /// Return the number of entropy+checksum bits /// /// /// # Example /// ``` /// use bip39::{MnemonicType}; /// /// let test_mnemonic = "park remain person kitchen mule spell knee armed position rail grid ankle"; /// /// let mnemonic_type = MnemonicType::for_phrase(test_mnemonic).unwrap(); /// /// let total_bits = mnemonic_type.total_bits(); /// ``` pub fn total_bits(&self) -> usize { self.entropy_bits() + self.checksum_bits() as usize } /// Return the number of entropy bits /// /// /// # Example /// ``` /// use bip39::{MnemonicType}; /// /// let test_mnemonic = "park remain person kitchen mule spell knee armed position rail grid ankle"; /// /// let mnemonic_type = MnemonicType::for_phrase(test_mnemonic).unwrap(); /// /// let entropy_bits = mnemonic_type.entropy_bits(); /// ``` pub fn entropy_bits(&self) -> usize { (*self as usize) >> ENTROPY_OFFSET } /// Return the number of checksum bits /// /// /// # Example /// ``` /// use bip39::{MnemonicType}; /// /// let test_mnemonic = "park remain person kitchen mule spell knee armed position rail grid ankle"; /// /// let mnemonic_type = MnemonicType::for_phrase(test_mnemonic).unwrap(); /// /// let checksum_bits = mnemonic_type.checksum_bits(); /// ``` pub fn checksum_bits(&self) -> u8 { (*self as usize) as u8 } /// Return the number of words /// /// /// # Example /// ``` /// use bip39::{MnemonicType}; /// /// let mnemonic_type = MnemonicType::Words12; /// /// let word_count = mnemonic_type.word_count(); /// ``` pub fn word_count(&self) -> usize { self.total_bits() / 11 } } impl Default for MnemonicType { fn default() -> MnemonicType { MnemonicType::Words12 } } impl fmt::Display for MnemonicType { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{} words ({}bits)", self.word_count(), self.entropy_bits()) } } #[cfg(test)] mod test { use super::*; #[test] fn word_count() { assert_eq!(MnemonicType::Words12.word_count(), 12); assert_eq!(MnemonicType::Words15.word_count(), 15); assert_eq!(MnemonicType::Words18.word_count(), 18); assert_eq!(MnemonicType::Words21.word_count(), 21); assert_eq!(MnemonicType::Words24.word_count(), 24); } #[test] fn entropy_bits() { assert_eq!(MnemonicType::Words12.entropy_bits(), 128); assert_eq!(MnemonicType::Words15.entropy_bits(), 160); assert_eq!(MnemonicType::Words18.entropy_bits(), 192); assert_eq!(MnemonicType::Words21.entropy_bits(), 224); assert_eq!(MnemonicType::Words24.entropy_bits(), 256); } #[test] fn checksum_bits() { assert_eq!(MnemonicType::Words12.checksum_bits(), 4); assert_eq!(MnemonicType::Words15.checksum_bits(), 5); assert_eq!(MnemonicType::Words18.checksum_bits(), 6); assert_eq!(MnemonicType::Words21.checksum_bits(), 7); assert_eq!(MnemonicType::Words24.checksum_bits(), 8); } }