1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
// Necessary for using `Mutex<usize>` for conditional variables #![allow(clippy::mutex_atomic)] use crate::primitive::sync::{Arc, Condvar, Mutex}; use std::fmt; /// Enables threads to synchronize the beginning or end of some computation. /// /// # Wait groups vs barriers /// /// `WaitGroup` is very similar to [`Barrier`], but there are a few differences: /// /// * [`Barrier`] needs to know the number of threads at construction, while `WaitGroup` is cloned to /// register more threads. /// /// * A [`Barrier`] can be reused even after all threads have synchronized, while a `WaitGroup` /// synchronizes threads only once. /// /// * All threads wait for others to reach the [`Barrier`]. With `WaitGroup`, each thread can choose /// to either wait for other threads or to continue without blocking. /// /// # Examples /// /// ``` /// use crossbeam_utils::sync::WaitGroup; /// use std::thread; /// /// // Create a new wait group. /// let wg = WaitGroup::new(); /// /// for _ in 0..4 { /// // Create another reference to the wait group. /// let wg = wg.clone(); /// /// thread::spawn(move || { /// // Do some work. /// /// // Drop the reference to the wait group. /// drop(wg); /// }); /// } /// /// // Block until all threads have finished their work. /// wg.wait(); /// ``` /// /// [`Barrier`]: std::sync::Barrier pub struct WaitGroup { inner: Arc<Inner>, } /// Inner state of a `WaitGroup`. struct Inner { cvar: Condvar, count: Mutex<usize>, } impl Default for WaitGroup { fn default() -> Self { Self { inner: Arc::new(Inner { cvar: Condvar::new(), count: Mutex::new(1), }), } } } impl WaitGroup { /// Creates a new wait group and returns the single reference to it. /// /// # Examples /// /// ``` /// use crossbeam_utils::sync::WaitGroup; /// /// let wg = WaitGroup::new(); /// ``` pub fn new() -> Self { Self::default() } /// Drops this reference and waits until all other references are dropped. /// /// # Examples /// /// ``` /// use crossbeam_utils::sync::WaitGroup; /// use std::thread; /// /// let wg = WaitGroup::new(); /// /// thread::spawn({ /// let wg = wg.clone(); /// move || { /// // Block until both threads have reached `wait()`. /// wg.wait(); /// } /// }); /// /// // Block until both threads have reached `wait()`. /// wg.wait(); /// ``` pub fn wait(self) { if *self.inner.count.lock().unwrap() == 1 { return; } let inner = self.inner.clone(); drop(self); let mut count = inner.count.lock().unwrap(); while *count > 0 { count = inner.cvar.wait(count).unwrap(); } } } impl Drop for WaitGroup { fn drop(&mut self) { let mut count = self.inner.count.lock().unwrap(); *count -= 1; if *count == 0 { self.inner.cvar.notify_all(); } } } impl Clone for WaitGroup { fn clone(&self) -> WaitGroup { let mut count = self.inner.count.lock().unwrap(); *count += 1; WaitGroup { inner: self.inner.clone(), } } } impl fmt::Debug for WaitGroup { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let count: &usize = &*self.inner.count.lock().unwrap(); f.debug_struct("WaitGroup").field("count", count).finish() } }