1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
// -*- mode: rust; -*-
//
// This file is part of ed25519-dalek.
// Copyright (c) 2017-2019 isis lovecruft
// See LICENSE for licensing information.
//
// Authors:
// - isis agora lovecruft <[email protected]>

//! ed25519 public keys.

use core::convert::TryFrom;
use core::fmt::Debug;

use curve25519_dalek::constants;
use curve25519_dalek::digest::generic_array::typenum::U64;
use curve25519_dalek::digest::Digest;
use curve25519_dalek::edwards::CompressedEdwardsY;
use curve25519_dalek::edwards::EdwardsPoint;
use curve25519_dalek::scalar::Scalar;

use ed25519::signature::Verifier;

pub use sha2::Sha512;

#[cfg(feature = "serde")]
use serde::de::Error as SerdeError;
#[cfg(feature = "serde")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};
#[cfg(feature = "serde")]
use serde_bytes::{Bytes as SerdeBytes, ByteBuf as SerdeByteBuf};

use crate::constants::*;
use crate::errors::*;
use crate::secret::*;
use crate::signature::*;

/// An ed25519 public key.
#[derive(Copy, Clone, Default, Eq, PartialEq)]
pub struct PublicKey(pub(crate) CompressedEdwardsY, pub(crate) EdwardsPoint);

impl Debug for PublicKey {
    fn fmt(&self, f: &mut ::core::fmt::Formatter<'_>) -> ::core::fmt::Result {
        write!(f, "PublicKey({:?}), {:?})", self.0, self.1)
    }
}

impl AsRef<[u8]> for PublicKey {
    fn as_ref(&self) -> &[u8] {
        self.as_bytes()
    }
}

impl<'a> From<&'a SecretKey> for PublicKey {
    /// Derive this public key from its corresponding `SecretKey`.
    fn from(secret_key: &SecretKey) -> PublicKey {
        let mut h: Sha512 = Sha512::new();
        let mut hash: [u8; 64] = [0u8; 64];
        let mut digest: [u8; 32] = [0u8; 32];

        h.update(secret_key.as_bytes());
        hash.copy_from_slice(h.finalize().as_slice());

        digest.copy_from_slice(&hash[..32]);

        PublicKey::mangle_scalar_bits_and_multiply_by_basepoint_to_produce_public_key(&mut digest)
    }
}

impl<'a> From<&'a ExpandedSecretKey> for PublicKey {
    /// Derive this public key from its corresponding `ExpandedSecretKey`.
    fn from(expanded_secret_key: &ExpandedSecretKey) -> PublicKey {
        let mut bits: [u8; 32] = expanded_secret_key.key.to_bytes();

        PublicKey::mangle_scalar_bits_and_multiply_by_basepoint_to_produce_public_key(&mut bits)
    }
}

impl PublicKey {
    /// Convert this public key to a byte array.
    #[inline]
    pub fn to_bytes(&self) -> [u8; PUBLIC_KEY_LENGTH] {
        self.0.to_bytes()
    }

    /// View this public key as a byte array.
    #[inline]
    pub fn as_bytes<'a>(&'a self) -> &'a [u8; PUBLIC_KEY_LENGTH] {
        &(self.0).0
    }

    /// Construct a `PublicKey` from a slice of bytes.
    ///
    /// # Warning
    ///
    /// The caller is responsible for ensuring that the bytes passed into this
    /// method actually represent a `curve25519_dalek::curve::CompressedEdwardsY`
    /// and that said compressed point is actually a point on the curve.
    ///
    /// # Example
    ///
    /// ```
    /// # extern crate ed25519_dalek;
    /// #
    /// use ed25519_dalek::PublicKey;
    /// use ed25519_dalek::PUBLIC_KEY_LENGTH;
    /// use ed25519_dalek::SignatureError;
    ///
    /// # fn doctest() -> Result<PublicKey, SignatureError> {
    /// let public_key_bytes: [u8; PUBLIC_KEY_LENGTH] = [
    ///    215,  90, 152,   1, 130, 177,  10, 183, 213,  75, 254, 211, 201, 100,   7,  58,
    ///     14, 225, 114, 243, 218, 166,  35,  37, 175,   2,  26, 104, 247,   7,   81, 26];
    ///
    /// let public_key = PublicKey::from_bytes(&public_key_bytes)?;
    /// #
    /// # Ok(public_key)
    /// # }
    /// #
    /// # fn main() {
    /// #     doctest();
    /// # }
    /// ```
    ///
    /// # Returns
    ///
    /// A `Result` whose okay value is an EdDSA `PublicKey` or whose error value
    /// is an `SignatureError` describing the error that occurred.
    #[inline]
    pub fn from_bytes(bytes: &[u8]) -> Result<PublicKey, SignatureError> {
        if bytes.len() != PUBLIC_KEY_LENGTH {
            return Err(InternalError::BytesLengthError {
                name: "PublicKey",
                length: PUBLIC_KEY_LENGTH,
            }.into());
        }
        let mut bits: [u8; 32] = [0u8; 32];
        bits.copy_from_slice(&bytes[..32]);

        let compressed = CompressedEdwardsY(bits);
        let point = compressed
            .decompress()
            .ok_or(InternalError::PointDecompressionError)?;

        Ok(PublicKey(compressed, point))
    }

    /// Internal utility function for mangling the bits of a (formerly
    /// mathematically well-defined) "scalar" and multiplying it to produce a
    /// public key.
    fn mangle_scalar_bits_and_multiply_by_basepoint_to_produce_public_key(
        bits: &mut [u8; 32],
    ) -> PublicKey {
        bits[0] &= 248;
        bits[31] &= 127;
        bits[31] |= 64;

        let point = &Scalar::from_bits(*bits) * &constants::ED25519_BASEPOINT_TABLE;
        let compressed = point.compress();

        PublicKey(compressed, point)
    }

    /// Verify a `signature` on a `prehashed_message` using the Ed25519ph algorithm.
    ///
    /// # Inputs
    ///
    /// * `prehashed_message` is an instantiated hash digest with 512-bits of
    ///   output which has had the message to be signed previously fed into its
    ///   state.
    /// * `context` is an optional context string, up to 255 bytes inclusive,
    ///   which may be used to provide additional domain separation.  If not
    ///   set, this will default to an empty string.
    /// * `signature` is a purported Ed25519ph [`Signature`] on the `prehashed_message`.
    ///
    /// # Returns
    ///
    /// Returns `true` if the `signature` was a valid signature created by this
    /// `Keypair` on the `prehashed_message`.
    ///
    /// [rfc8032]: https://tools.ietf.org/html/rfc8032#section-5.1
    #[allow(non_snake_case)]
    pub fn verify_prehashed<D>(
        &self,
        prehashed_message: D,
        context: Option<&[u8]>,
        signature: &ed25519::Signature,
    ) -> Result<(), SignatureError>
    where
        D: Digest<OutputSize = U64>,
    {
        let signature = InternalSignature::try_from(signature)?;

        let mut h: Sha512 = Sha512::default();
        let R: EdwardsPoint;
        let k: Scalar;

        let ctx: &[u8] = context.unwrap_or(b"");
        debug_assert!(ctx.len() <= 255, "The context must not be longer than 255 octets.");

        let minus_A: EdwardsPoint = -self.1;

        h.update(b"SigEd25519 no Ed25519 collisions");
        h.update(&[1]); // Ed25519ph
        h.update(&[ctx.len() as u8]);
        h.update(ctx);
        h.update(signature.R.as_bytes());
        h.update(self.as_bytes());
        h.update(prehashed_message.finalize().as_slice());

        k = Scalar::from_hash(h);
        R = EdwardsPoint::vartime_double_scalar_mul_basepoint(&k, &(minus_A), &signature.s);

        if R.compress() == signature.R {
            Ok(())
        } else {
            Err(InternalError::VerifyError.into())
        }
    }

    /// Strictly verify a signature on a message with this keypair's public key.
    ///
    /// # On The (Multiple) Sources of Malleability in Ed25519 Signatures
    ///
    /// This version of verification is technically non-RFC8032 compliant.  The
    /// following explains why.
    ///
    /// 1. Scalar Malleability
    ///
    /// The authors of the RFC explicitly stated that verification of an ed25519
    /// signature must fail if the scalar `s` is not properly reduced mod \ell:
    ///
    /// > To verify a signature on a message M using public key A, with F
    /// > being 0 for Ed25519ctx, 1 for Ed25519ph, and if Ed25519ctx or
    /// > Ed25519ph is being used, C being the context, first split the
    /// > signature into two 32-octet halves.  Decode the first half as a
    /// > point R, and the second half as an integer S, in the range
    /// > 0 <= s < L.  Decode the public key A as point A'.  If any of the
    /// > decodings fail (including S being out of range), the signature is
    /// > invalid.)
    ///
    /// All `verify_*()` functions within ed25519-dalek perform this check.
    ///
    /// 2. Point malleability
    ///
    /// The authors of the RFC added in a malleability check to step #3 in
    /// §5.1.7, for small torsion components in the `R` value of the signature,
    /// *which is not strictly required*, as they state:
    ///
    /// > Check the group equation \[8\]\[S\]B = \[8\]R + \[8\]\[k\]A'.  It's
    /// > sufficient, but not required, to instead check \[S\]B = R + \[k\]A'.
    ///
    /// # History of Malleability Checks
    ///
    /// As originally defined (cf. the "Malleability" section in the README of
    /// this repo), ed25519 signatures didn't consider *any* form of
    /// malleability to be an issue.  Later the scalar malleability was
    /// considered important.  Still later, particularly with interests in
    /// cryptocurrency design and in unique identities (e.g. for Signal users,
    /// Tor onion services, etc.), the group element malleability became a
    /// concern.
    ///
    /// However, libraries had already been created to conform to the original
    /// definition.  One well-used library in particular even implemented the
    /// group element malleability check, *but only for batch verification*!
    /// Which meant that even using the same library, a single signature could
    /// verify fine individually, but suddenly, when verifying it with a bunch
    /// of other signatures, the whole batch would fail!
    ///
    /// # "Strict" Verification
    ///
    /// This method performs *both* of the above signature malleability checks.
    ///
    /// It must be done as a separate method because one doesn't simply get to
    /// change the definition of a cryptographic primitive ten years
    /// after-the-fact with zero consideration for backwards compatibility in
    /// hardware and protocols which have it already have the older definition
    /// baked in.
    ///
    /// # Return
    ///
    /// Returns `Ok(())` if the signature is valid, and `Err` otherwise.
    #[allow(non_snake_case)]
    pub fn verify_strict(
        &self,
        message: &[u8],
        signature: &ed25519::Signature,
    ) -> Result<(), SignatureError>
    {
        let signature = InternalSignature::try_from(signature)?;

        let mut h: Sha512 = Sha512::new();
        let R: EdwardsPoint;
        let k: Scalar;
        let minus_A: EdwardsPoint = -self.1;
        let signature_R: EdwardsPoint;

        match signature.R.decompress() {
            None => return Err(InternalError::VerifyError.into()),
            Some(x) => signature_R = x,
        }

        // Logical OR is fine here as we're not trying to be constant time.
        if signature_R.is_small_order() || self.1.is_small_order() {
            return Err(InternalError::VerifyError.into());
        }

        h.update(signature.R.as_bytes());
        h.update(self.as_bytes());
        h.update(&message);

        k = Scalar::from_hash(h);
        R = EdwardsPoint::vartime_double_scalar_mul_basepoint(&k, &(minus_A), &signature.s);

        if R == signature_R {
            Ok(())
        } else {
            Err(InternalError::VerifyError.into())
        }
    }
}

impl Verifier<ed25519::Signature> for PublicKey {
    /// Verify a signature on a message with this keypair's public key.
    ///
    /// # Return
    ///
    /// Returns `Ok(())` if the signature is valid, and `Err` otherwise.
    #[allow(non_snake_case)]
    fn verify(
        &self,
        message: &[u8],
        signature: &ed25519::Signature
    ) -> Result<(), SignatureError>
    {
        let signature = InternalSignature::try_from(signature)?;

        let mut h: Sha512 = Sha512::new();
        let R: EdwardsPoint;
        let k: Scalar;
        let minus_A: EdwardsPoint = -self.1;

        h.update(signature.R.as_bytes());
        h.update(self.as_bytes());
        h.update(&message);

        k = Scalar::from_hash(h);
        R = EdwardsPoint::vartime_double_scalar_mul_basepoint(&k, &(minus_A), &signature.s);

        if R.compress() == signature.R {
            Ok(())
        } else {
            Err(InternalError::VerifyError.into())
        }
    }
}

#[cfg(feature = "serde")]
impl Serialize for PublicKey {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        SerdeBytes::new(self.as_bytes()).serialize(serializer)
    }
}

#[cfg(feature = "serde")]
impl<'d> Deserialize<'d> for PublicKey {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: Deserializer<'d>,
    {
        let bytes = <SerdeByteBuf>::deserialize(deserializer)?;
        PublicKey::from_bytes(bytes.as_ref()).map_err(SerdeError::custom)
    }
}