1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
// -*- mode: rust; -*- // // This file is part of ed25519-dalek. // Copyright (c) 2017-2019 isis lovecruft // See LICENSE for licensing information. // // Authors: // - isis agora lovecruft <[email protected]> //! ed25519 secret key types. use core::fmt::Debug; use curve25519_dalek::constants; use curve25519_dalek::digest::generic_array::typenum::U64; use curve25519_dalek::digest::Digest; use curve25519_dalek::edwards::CompressedEdwardsY; use curve25519_dalek::scalar::Scalar; #[cfg(feature = "rand")] use rand::{CryptoRng, RngCore}; use sha2::Sha512; #[cfg(feature = "serde")] use serde::de::Error as SerdeError; #[cfg(feature = "serde")] use serde::{Deserialize, Deserializer, Serialize, Serializer}; #[cfg(feature = "serde")] use serde_bytes::{Bytes as SerdeBytes, ByteBuf as SerdeByteBuf}; use zeroize::Zeroize; use crate::constants::*; use crate::errors::*; use crate::public::*; use crate::signature::*; /// An EdDSA secret key. /// /// Instances of this secret are automatically overwritten with zeroes when they /// fall out of scope. #[derive(Zeroize)] #[zeroize(drop)] // Overwrite secret key material with null bytes when it goes out of scope. pub struct SecretKey(pub(crate) [u8; SECRET_KEY_LENGTH]); impl Debug for SecretKey { fn fmt(&self, f: &mut ::core::fmt::Formatter<'_>) -> ::core::fmt::Result { write!(f, "SecretKey: {:?}", &self.0[..]) } } impl AsRef<[u8]> for SecretKey { fn as_ref(&self) -> &[u8] { self.as_bytes() } } impl SecretKey { /// Convert this secret key to a byte array. #[inline] pub fn to_bytes(&self) -> [u8; SECRET_KEY_LENGTH] { self.0 } /// View this secret key as a byte array. #[inline] pub fn as_bytes<'a>(&'a self) -> &'a [u8; SECRET_KEY_LENGTH] { &self.0 } /// Construct a `SecretKey` from a slice of bytes. /// /// # Example /// /// ``` /// # extern crate ed25519_dalek; /// # /// use ed25519_dalek::SecretKey; /// use ed25519_dalek::SECRET_KEY_LENGTH; /// use ed25519_dalek::SignatureError; /// /// # fn doctest() -> Result<SecretKey, SignatureError> { /// let secret_key_bytes: [u8; SECRET_KEY_LENGTH] = [ /// 157, 097, 177, 157, 239, 253, 090, 096, /// 186, 132, 074, 244, 146, 236, 044, 196, /// 068, 073, 197, 105, 123, 050, 105, 025, /// 112, 059, 172, 003, 028, 174, 127, 096, ]; /// /// let secret_key: SecretKey = SecretKey::from_bytes(&secret_key_bytes)?; /// # /// # Ok(secret_key) /// # } /// # /// # fn main() { /// # let result = doctest(); /// # assert!(result.is_ok()); /// # } /// ``` /// /// # Returns /// /// A `Result` whose okay value is an EdDSA `SecretKey` or whose error value /// is an `SignatureError` wrapping the internal error that occurred. #[inline] pub fn from_bytes(bytes: &[u8]) -> Result<SecretKey, SignatureError> { if bytes.len() != SECRET_KEY_LENGTH { return Err(InternalError::BytesLengthError { name: "SecretKey", length: SECRET_KEY_LENGTH, }.into()); } let mut bits: [u8; 32] = [0u8; 32]; bits.copy_from_slice(&bytes[..32]); Ok(SecretKey(bits)) } /// Generate a `SecretKey` from a `csprng`. /// /// # Example /// /// ``` /// extern crate rand; /// extern crate ed25519_dalek; /// /// # #[cfg(feature = "std")] /// # fn main() { /// # /// use rand::rngs::OsRng; /// use ed25519_dalek::PublicKey; /// use ed25519_dalek::SecretKey; /// use ed25519_dalek::Signature; /// /// let mut csprng = OsRng{}; /// let secret_key: SecretKey = SecretKey::generate(&mut csprng); /// # } /// # /// # #[cfg(not(feature = "std"))] /// # fn main() { } /// ``` /// /// Afterwards, you can generate the corresponding public: /// /// ``` /// # extern crate rand; /// # extern crate ed25519_dalek; /// # /// # fn main() { /// # /// # use rand::rngs::OsRng; /// # use ed25519_dalek::PublicKey; /// # use ed25519_dalek::SecretKey; /// # use ed25519_dalek::Signature; /// # /// # let mut csprng = OsRng{}; /// # let secret_key: SecretKey = SecretKey::generate(&mut csprng); /// /// let public_key: PublicKey = (&secret_key).into(); /// # } /// ``` /// /// # Input /// /// A CSPRNG with a `fill_bytes()` method, e.g. `rand::OsRng` #[cfg(feature = "rand")] pub fn generate<T>(csprng: &mut T) -> SecretKey where T: CryptoRng + RngCore, { let mut sk: SecretKey = SecretKey([0u8; 32]); csprng.fill_bytes(&mut sk.0); sk } } #[cfg(feature = "serde")] impl Serialize for SecretKey { fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: Serializer, { SerdeBytes::new(self.as_bytes()).serialize(serializer) } } #[cfg(feature = "serde")] impl<'d> Deserialize<'d> for SecretKey { fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> where D: Deserializer<'d>, { let bytes = <SerdeByteBuf>::deserialize(deserializer)?; SecretKey::from_bytes(bytes.as_ref()).map_err(SerdeError::custom) } } /// An "expanded" secret key. /// /// This is produced by using an hash function with 512-bits output to digest a /// `SecretKey`. The output digest is then split in half, the lower half being /// the actual `key` used to sign messages, after twiddling with some bits.¹ The /// upper half is used a sort of half-baked, ill-designed² pseudo-domain-separation /// "nonce"-like thing, which is used during signature production by /// concatenating it with the message to be signed before the message is hashed. /// /// Instances of this secret are automatically overwritten with zeroes when they /// fall out of scope. // // ¹ This results in a slight bias towards non-uniformity at one spectrum of // the range of valid keys. Oh well: not my idea; not my problem. // // ² It is the author's view (specifically, isis agora lovecruft, in the event // you'd like to complain about me, again) that this is "ill-designed" because // this doesn't actually provide true hash domain separation, in that in many // real-world applications a user wishes to have one key which is used in // several contexts (such as within tor, which does domain separation // manually by pre-concatenating static strings to messages to achieve more // robust domain separation). In other real-world applications, such as // bitcoind, a user might wish to have one master keypair from which others are // derived (à la BIP32) and different domain separators between keys derived at // different levels (and similarly for tree-based key derivation constructions, // such as hash-based signatures). Leaving the domain separation to // application designers, who thus far have produced incompatible, // slightly-differing, ad hoc domain separation (at least those application // designers who knew enough cryptographic theory to do so!), is therefore a // bad design choice on the part of the cryptographer designing primitives // which should be simple and as foolproof as possible to use for // non-cryptographers. Further, later in the ed25519 signature scheme, as // specified in RFC8032, the public key is added into *another* hash digest // (along with the message, again); it is unclear to this author why there's // not only one but two poorly-thought-out attempts at domain separation in the // same signature scheme, and which both fail in exactly the same way. For a // better-designed, Schnorr-based signature scheme, see Trevor Perrin's work on // "generalised EdDSA" and "VXEdDSA". #[derive(Zeroize)] #[zeroize(drop)] // Overwrite secret key material with null bytes when it goes out of scope. pub struct ExpandedSecretKey { pub(crate) key: Scalar, pub(crate) nonce: [u8; 32], } impl<'a> From<&'a SecretKey> for ExpandedSecretKey { /// Construct an `ExpandedSecretKey` from a `SecretKey`. /// /// # Examples /// /// ``` /// # extern crate rand; /// # extern crate sha2; /// # extern crate ed25519_dalek; /// # /// # fn main() { /// # /// use rand::rngs::OsRng; /// use ed25519_dalek::{SecretKey, ExpandedSecretKey}; /// /// let mut csprng = OsRng{}; /// let secret_key: SecretKey = SecretKey::generate(&mut csprng); /// let expanded_secret_key: ExpandedSecretKey = ExpandedSecretKey::from(&secret_key); /// # } /// ``` fn from(secret_key: &'a SecretKey) -> ExpandedSecretKey { let mut h: Sha512 = Sha512::default(); let mut hash: [u8; 64] = [0u8; 64]; let mut lower: [u8; 32] = [0u8; 32]; let mut upper: [u8; 32] = [0u8; 32]; h.update(secret_key.as_bytes()); hash.copy_from_slice(h.finalize().as_slice()); lower.copy_from_slice(&hash[00..32]); upper.copy_from_slice(&hash[32..64]); lower[0] &= 248; lower[31] &= 63; lower[31] |= 64; ExpandedSecretKey{ key: Scalar::from_bits(lower), nonce: upper, } } } impl ExpandedSecretKey { /// Convert this `ExpandedSecretKey` into an array of 64 bytes. /// /// # Returns /// /// An array of 64 bytes. The first 32 bytes represent the "expanded" /// secret key, and the last 32 bytes represent the "domain-separation" /// "nonce". /// /// # Examples /// /// ``` /// # extern crate rand; /// # extern crate sha2; /// # extern crate ed25519_dalek; /// # /// # #[cfg(feature = "std")] /// # fn main() { /// # /// use rand::rngs::OsRng; /// use ed25519_dalek::{SecretKey, ExpandedSecretKey}; /// /// let mut csprng = OsRng{}; /// let secret_key: SecretKey = SecretKey::generate(&mut csprng); /// let expanded_secret_key: ExpandedSecretKey = ExpandedSecretKey::from(&secret_key); /// let expanded_secret_key_bytes: [u8; 64] = expanded_secret_key.to_bytes(); /// /// assert!(&expanded_secret_key_bytes[..] != &[0u8; 64][..]); /// # } /// # /// # #[cfg(not(feature = "std"))] /// # fn main() { } /// ``` #[inline] pub fn to_bytes(&self) -> [u8; EXPANDED_SECRET_KEY_LENGTH] { let mut bytes: [u8; 64] = [0u8; 64]; bytes[..32].copy_from_slice(self.key.as_bytes()); bytes[32..].copy_from_slice(&self.nonce[..]); bytes } /// Construct an `ExpandedSecretKey` from a slice of bytes. /// /// # Returns /// /// A `Result` whose okay value is an EdDSA `ExpandedSecretKey` or whose /// error value is an `SignatureError` describing the error that occurred. /// /// # Examples /// /// ``` /// # extern crate rand; /// # extern crate sha2; /// # extern crate ed25519_dalek; /// # /// # use ed25519_dalek::{ExpandedSecretKey, SignatureError}; /// # /// # #[cfg(feature = "std")] /// # fn do_test() -> Result<ExpandedSecretKey, SignatureError> { /// # /// use rand::rngs::OsRng; /// use ed25519_dalek::{SecretKey, ExpandedSecretKey}; /// use ed25519_dalek::SignatureError; /// /// let mut csprng = OsRng{}; /// let secret_key: SecretKey = SecretKey::generate(&mut csprng); /// let expanded_secret_key: ExpandedSecretKey = ExpandedSecretKey::from(&secret_key); /// let bytes: [u8; 64] = expanded_secret_key.to_bytes(); /// let expanded_secret_key_again = ExpandedSecretKey::from_bytes(&bytes)?; /// # /// # Ok(expanded_secret_key_again) /// # } /// # /// # #[cfg(feature = "std")] /// # fn main() { /// # let result = do_test(); /// # assert!(result.is_ok()); /// # } /// # /// # #[cfg(not(feature = "std"))] /// # fn main() { } /// ``` #[inline] pub fn from_bytes(bytes: &[u8]) -> Result<ExpandedSecretKey, SignatureError> { if bytes.len() != EXPANDED_SECRET_KEY_LENGTH { return Err(InternalError::BytesLengthError { name: "ExpandedSecretKey", length: EXPANDED_SECRET_KEY_LENGTH, }.into()); } let mut lower: [u8; 32] = [0u8; 32]; let mut upper: [u8; 32] = [0u8; 32]; lower.copy_from_slice(&bytes[00..32]); upper.copy_from_slice(&bytes[32..64]); Ok(ExpandedSecretKey { key: Scalar::from_bits(lower), nonce: upper, }) } /// Sign a message with this `ExpandedSecretKey`. #[allow(non_snake_case)] pub fn sign(&self, message: &[u8], public_key: &PublicKey) -> ed25519::Signature { let mut h: Sha512 = Sha512::new(); let R: CompressedEdwardsY; let r: Scalar; let s: Scalar; let k: Scalar; h.update(&self.nonce); h.update(&message); r = Scalar::from_hash(h); R = (&r * &constants::ED25519_BASEPOINT_TABLE).compress(); h = Sha512::new(); h.update(R.as_bytes()); h.update(public_key.as_bytes()); h.update(&message); k = Scalar::from_hash(h); s = &(&k * &self.key) + &r; InternalSignature { R, s }.into() } /// Sign a `prehashed_message` with this `ExpandedSecretKey` using the /// Ed25519ph algorithm defined in [RFC8032 §5.1][rfc8032]. /// /// # Inputs /// /// * `prehashed_message` is an instantiated hash digest with 512-bits of /// output which has had the message to be signed previously fed into its /// state. /// * `public_key` is a [`PublicKey`] which corresponds to this secret key. /// * `context` is an optional context string, up to 255 bytes inclusive, /// which may be used to provide additional domain separation. If not /// set, this will default to an empty string. /// /// # Returns /// /// A `Result` whose `Ok` value is an Ed25519ph [`Signature`] on the /// `prehashed_message` if the context was 255 bytes or less, otherwise /// a `SignatureError`. /// /// [rfc8032]: https://tools.ietf.org/html/rfc8032#section-5.1 #[allow(non_snake_case)] pub fn sign_prehashed<'a, D>( &self, prehashed_message: D, public_key: &PublicKey, context: Option<&'a [u8]>, ) -> Result<ed25519::Signature, SignatureError> where D: Digest<OutputSize = U64>, { let mut h: Sha512; let mut prehash: [u8; 64] = [0u8; 64]; let R: CompressedEdwardsY; let r: Scalar; let s: Scalar; let k: Scalar; let ctx: &[u8] = context.unwrap_or(b""); // By default, the context is an empty string. if ctx.len() > 255 { return Err(SignatureError::from(InternalError::PrehashedContextLengthError)); } let ctx_len: u8 = ctx.len() as u8; // Get the result of the pre-hashed message. prehash.copy_from_slice(prehashed_message.finalize().as_slice()); // This is the dumbest, ten-years-late, non-admission of fucking up the // domain separation I have ever seen. Why am I still required to put // the upper half "prefix" of the hashed "secret key" in here? Why // can't the user just supply their own nonce and decide for themselves // whether or not they want a deterministic signature scheme? Why does // the message go into what's ostensibly the signature domain separation // hash? Why wasn't there always a way to provide a context string? // // ... // // This is a really fucking stupid bandaid, and the damned scheme is // still bleeding from malleability, for fuck's sake. h = Sha512::new() .chain(b"SigEd25519 no Ed25519 collisions") .chain(&[1]) // Ed25519ph .chain(&[ctx_len]) .chain(ctx) .chain(&self.nonce) .chain(&prehash[..]); r = Scalar::from_hash(h); R = (&r * &constants::ED25519_BASEPOINT_TABLE).compress(); h = Sha512::new() .chain(b"SigEd25519 no Ed25519 collisions") .chain(&[1]) // Ed25519ph .chain(&[ctx_len]) .chain(ctx) .chain(R.as_bytes()) .chain(public_key.as_bytes()) .chain(&prehash[..]); k = Scalar::from_hash(h); s = &(&k * &self.key) + &r; Ok(InternalSignature { R, s }.into()) } } #[cfg(feature = "serde")] impl Serialize for ExpandedSecretKey { fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: Serializer, { let bytes = &self.to_bytes()[..]; SerdeBytes::new(bytes).serialize(serializer) } } #[cfg(feature = "serde")] impl<'d> Deserialize<'d> for ExpandedSecretKey { fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> where D: Deserializer<'d>, { let bytes = <SerdeByteBuf>::deserialize(deserializer)?; ExpandedSecretKey::from_bytes(bytes.as_ref()).map_err(SerdeError::custom) } } #[cfg(test)] mod test { use super::*; #[test] fn secret_key_zeroize_on_drop() { let secret_ptr: *const u8; { // scope for the secret to ensure it's been dropped let secret = SecretKey::from_bytes(&[0x15u8; 32][..]).unwrap(); secret_ptr = secret.0.as_ptr(); } let memory: &[u8] = unsafe { ::std::slice::from_raw_parts(secret_ptr, 32) }; assert!(!memory.contains(&0x15)); } }