use std::collections::BTreeMap;
use linregress::{FormulaRegressionBuilder, RegressionDataBuilder, RegressionModel};
use crate::BenchmarkResults;
pub struct Analysis {
pub base: u128,
pub slopes: Vec<u128>,
pub names: Vec<String>,
pub value_dists: Option<Vec<(Vec<u32>, u128, u128)>>,
pub model: Option<RegressionModel>,
}
pub enum BenchmarkSelector {
ExtrinsicTime,
StorageRootTime,
Reads,
Writes,
}
impl Analysis {
fn median_value(r: &Vec<BenchmarkResults>, selector: BenchmarkSelector) -> Option<Self> {
if r.is_empty() { return None }
let mut values: Vec<u128> = r.iter().map(|result|
match selector {
BenchmarkSelector::ExtrinsicTime => result.extrinsic_time,
BenchmarkSelector::StorageRootTime => result.storage_root_time,
BenchmarkSelector::Reads => result.reads.into(),
BenchmarkSelector::Writes => result.writes.into(),
}
).collect();
values.sort();
let mid = values.len() / 2;
Some(Self {
base: values[mid],
slopes: Vec::new(),
names: Vec::new(),
value_dists: None,
model: None,
})
}
pub fn median_slopes(r: &Vec<BenchmarkResults>, selector: BenchmarkSelector) -> Option<Self> {
if r[0].components.is_empty() { return Self::median_value(r, selector) }
let results = r[0].components.iter().enumerate().map(|(i, &(param, _))| {
let mut counted = BTreeMap::<Vec<u32>, usize>::new();
for result in r.iter() {
let mut p = result.components.iter().map(|x| x.1).collect::<Vec<_>>();
p[i] = 0;
*counted.entry(p).or_default() += 1;
}
let others: Vec<u32> = counted.iter().max_by_key(|i| i.1).expect("r is not empty; qed").0.clone();
let values = r.iter()
.filter(|v|
v.components.iter()
.map(|x| x.1)
.zip(others.iter())
.enumerate()
.all(|(j, (v1, v2))| j == i || v1 == *v2)
).map(|result| {
let data = match selector {
BenchmarkSelector::ExtrinsicTime => result.extrinsic_time,
BenchmarkSelector::StorageRootTime => result.storage_root_time,
BenchmarkSelector::Reads => result.reads.into(),
BenchmarkSelector::Writes => result.writes.into(),
};
(result.components[i].1, data)
})
.collect::<Vec<_>>();
(format!("{:?}", param), i, others, values)
}).collect::<Vec<_>>();
let models = results.iter().map(|(_, _, _, ref values)| {
let mut slopes = vec![];
for (i, &(x1, y1)) in values.iter().enumerate() {
for &(x2, y2) in values.iter().skip(i + 1) {
if x1 != x2 {
slopes.push((y1 as f64 - y2 as f64) / (x1 as f64 - x2 as f64));
}
}
}
slopes.sort_by(|a, b| a.partial_cmp(b).expect("values well defined; qed"));
let slope = slopes[slopes.len() / 2];
let mut offsets = vec![];
for &(x, y) in values.iter() {
offsets.push(y as f64 - slope * x as f64);
}
offsets.sort_by(|a, b| a.partial_cmp(b).expect("values well defined; qed"));
let offset = offsets[offsets.len() / 2];
(offset, slope)
}).collect::<Vec<_>>();
let models = models.iter()
.zip(results.iter())
.map(|((offset, slope), (_, i, others, _))| {
let over = others.iter()
.enumerate()
.filter(|(j, _)| j != i)
.map(|(j, v)| models[j].1 * *v as f64)
.fold(0f64, |acc, i| acc + i);
(*offset - over, *slope)
})
.collect::<Vec<_>>();
let base = models[0].0.max(0f64) as u128;
let slopes = models.iter().map(|x| x.1.max(0f64) as u128).collect::<Vec<_>>();
Some(Self {
base,
slopes,
names: results.into_iter().map(|x| x.0).collect::<Vec<_>>(),
value_dists: None,
model: None,
})
}
pub fn min_squares_iqr(r: &Vec<BenchmarkResults>, selector: BenchmarkSelector) -> Option<Self> {
if r[0].components.is_empty() { return Self::median_value(r, selector) }
let mut results = BTreeMap::<Vec<u32>, Vec<u128>>::new();
for result in r.iter() {
let p = result.components.iter().map(|x| x.1).collect::<Vec<_>>();
results.entry(p).or_default().push(match selector {
BenchmarkSelector::ExtrinsicTime => result.extrinsic_time,
BenchmarkSelector::StorageRootTime => result.storage_root_time,
BenchmarkSelector::Reads => result.reads.into(),
BenchmarkSelector::Writes => result.writes.into(),
})
}
for (_, rs) in results.iter_mut() {
rs.sort();
let ql = rs.len() / 4;
*rs = rs[ql..rs.len() - ql].to_vec();
}
let mut data = vec![("Y", results.iter().flat_map(|x| x.1.iter().map(|v| *v as f64)).collect())];
let names = r[0].components.iter().map(|x| format!("{:?}", x.0)).collect::<Vec<_>>();
data.extend(names.iter()
.enumerate()
.map(|(i, p)| (
p.as_str(),
results.iter()
.flat_map(|x| Some(x.0[i] as f64)
.into_iter()
.cycle()
.take(x.1.len())
).collect::<Vec<_>>()
))
);
let data = RegressionDataBuilder::new().build_from(data).ok()?;
let model = FormulaRegressionBuilder::new()
.data(&data)
.formula(format!("Y ~ {}", names.join(" + ")))
.fit()
.ok()?;
let slopes = model.parameters.regressor_values.iter()
.enumerate()
.map(|(_, x)| (*x + 0.5) as u128)
.collect();
let value_dists = results.iter().map(|(p, vs)| {
if vs.len() == 0 { return (p.clone(), 0, 0) }
let total = vs.iter()
.fold(0u128, |acc, v| acc + *v);
let mean = total / vs.len() as u128;
let sum_sq_diff = vs.iter()
.fold(0u128, |acc, v| {
let d = mean.max(*v) - mean.min(*v);
acc + d * d
});
let stddev = (sum_sq_diff as f64 / vs.len() as f64).sqrt() as u128;
(p.clone(), mean, stddev)
}).collect::<Vec<_>>();
Some(Self {
base: (model.parameters.intercept_value + 0.5) as u128,
slopes,
names,
value_dists: Some(value_dists),
model: Some(model),
})
}
}
fn ms(mut nanos: u128) -> String {
let mut x = 100_000u128;
while x > 1 {
if nanos > x * 1_000 {
nanos = nanos / x * x;
break;
}
x /= 10;
}
format!("{}", nanos as f64 / 1_000f64)
}
impl std::fmt::Display for Analysis {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
if let Some(ref value_dists) = self.value_dists {
writeln!(f, "\nData points distribution:")?;
writeln!(f, "{} mean µs sigma µs %", self.names.iter().map(|p| format!("{:>5}", p)).collect::<Vec<_>>().join(" "))?;
for (param_values, mean, sigma) in value_dists.iter() {
if *mean == 0 {
writeln!(f, "{} {:>8} {:>8} {:>3}.{}%",
param_values.iter().map(|v| format!("{:>5}", v)).collect::<Vec<_>>().join(" "),
ms(*mean),
ms(*sigma),
"?",
"?"
)?;
} else {
writeln!(f, "{} {:>8} {:>8} {:>3}.{}%",
param_values.iter().map(|v| format!("{:>5}", v)).collect::<Vec<_>>().join(" "),
ms(*mean),
ms(*sigma),
(sigma * 100 / mean),
(sigma * 1000 / mean % 10)
)?;
}
}
}
if let Some(ref model) = self.model {
writeln!(f, "\nQuality and confidence:")?;
writeln!(f, "param error")?;
for (p, se) in self.names.iter().zip(model.se.regressor_values.iter()) {
writeln!(f, "{} {:>8}", p, ms(*se as u128))?;
}
}
writeln!(f, "\nModel:")?;
writeln!(f, "Time ~= {:>8}", ms(self.base))?;
for (&t, n) in self.slopes.iter().zip(self.names.iter()) {
writeln!(f, " + {} {:>8}", n, ms(t))?;
}
writeln!(f, " µs")
}
}
impl std::fmt::Debug for Analysis {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "{}", self.base)?;
for (&m, n) in self.slopes.iter().zip(self.names.iter()) {
write!(f, " + ({} * {})", m, n)?;
}
write!(f,"")
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::BenchmarkParameter;
fn benchmark_result(
components: Vec<(BenchmarkParameter, u32)>,
extrinsic_time: u128,
storage_root_time: u128,
reads: u32,
writes: u32,
) -> BenchmarkResults {
BenchmarkResults {
components,
extrinsic_time,
storage_root_time,
reads,
repeat_reads: 0,
writes,
repeat_writes: 0,
}
}
#[test]
fn analysis_median_slopes_should_work() {
let data = vec![
benchmark_result(vec![(BenchmarkParameter::n, 1), (BenchmarkParameter::m, 5)], 11_500_000, 0, 3, 10),
benchmark_result(vec![(BenchmarkParameter::n, 2), (BenchmarkParameter::m, 5)], 12_500_000, 0, 4, 10),
benchmark_result(vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 5)], 13_500_000, 0, 5, 10),
benchmark_result(vec![(BenchmarkParameter::n, 4), (BenchmarkParameter::m, 5)], 14_500_000, 0, 6, 10),
benchmark_result(vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 1)], 13_100_000, 0, 5, 2),
benchmark_result(vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 3)], 13_300_000, 0, 5, 6),
benchmark_result(vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 7)], 13_700_000, 0, 5, 14),
benchmark_result(vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 10)], 14_000_000, 0, 5, 20),
];
let extrinsic_time = Analysis::median_slopes(&data, BenchmarkSelector::ExtrinsicTime).unwrap();
assert_eq!(extrinsic_time.base, 10_000_000);
assert_eq!(extrinsic_time.slopes, vec![1_000_000, 100_000]);
let reads = Analysis::median_slopes(&data, BenchmarkSelector::Reads).unwrap();
assert_eq!(reads.base, 2);
assert_eq!(reads.slopes, vec![1, 0]);
let writes = Analysis::median_slopes(&data, BenchmarkSelector::Writes).unwrap();
assert_eq!(writes.base, 0);
assert_eq!(writes.slopes, vec![0, 2]);
}
#[test]
fn analysis_median_min_squares_should_work() {
let data = vec![
benchmark_result(vec![(BenchmarkParameter::n, 1), (BenchmarkParameter::m, 5)], 11_500_000, 0, 3, 10),
benchmark_result(vec![(BenchmarkParameter::n, 2), (BenchmarkParameter::m, 5)], 12_500_000, 0, 4, 10),
benchmark_result(vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 5)], 13_500_000, 0, 5, 10),
benchmark_result(vec![(BenchmarkParameter::n, 4), (BenchmarkParameter::m, 5)], 14_500_000, 0, 6, 10),
benchmark_result(vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 1)], 13_100_000, 0, 5, 2),
benchmark_result(vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 3)], 13_300_000, 0, 5, 6),
benchmark_result(vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 7)], 13_700_000, 0, 5, 14),
benchmark_result(vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 10)], 14_000_000, 0, 5, 20),
];
let extrinsic_time = Analysis::min_squares_iqr(&data, BenchmarkSelector::ExtrinsicTime).unwrap();
assert_eq!(extrinsic_time.base, 10_000_000);
assert_eq!(extrinsic_time.slopes, vec![1_000_000, 100_000]);
let reads = Analysis::min_squares_iqr(&data, BenchmarkSelector::Reads).unwrap();
assert_eq!(reads.base, 2);
assert_eq!(reads.slopes, vec![1, 0]);
let writes = Analysis::min_squares_iqr(&data, BenchmarkSelector::Writes).unwrap();
assert_eq!(writes.base, 0);
assert_eq!(writes.slopes, vec![0, 2]);
}
}