1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
use alloc::borrow::Cow;
use core::fmt::Debug;
use core::hash::Hash;
use core::ops::{Add, AddAssign, Sub};

use crate::common::Format;
use crate::endianity::Endianity;
use crate::leb128;
use crate::read::{Error, Result};

/// An identifier for an offset within a section reader.
///
/// This is used for error reporting. The meaning of this value is specific to
/// each reader implementation. The values should be chosen to be unique amongst
/// all readers. If values are not unique then errors may point to the wrong reader.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct ReaderOffsetId(pub u64);

/// A trait for offsets with a DWARF section.
///
/// This allows consumers to choose a size that is appropriate for their address space.
pub trait ReaderOffset:
    Debug + Copy + Eq + Ord + Hash + Add<Output = Self> + AddAssign + Sub<Output = Self>
{
    /// Convert a u8 to an offset.
    fn from_u8(offset: u8) -> Self;

    /// Convert a u16 to an offset.
    fn from_u16(offset: u16) -> Self;

    /// Convert an i16 to an offset.
    fn from_i16(offset: i16) -> Self;

    /// Convert a u32 to an offset.
    fn from_u32(offset: u32) -> Self;

    /// Convert a u64 to an offset.
    ///
    /// Returns `Error::UnsupportedOffset` if the value is too large.
    fn from_u64(offset: u64) -> Result<Self>;

    /// Convert an offset to a u64.
    fn into_u64(self) -> u64;

    /// Wrapping (modular) addition. Computes `self + other`.
    fn wrapping_add(self, other: Self) -> Self;

    /// Checked subtraction. Computes `self - other`.
    fn checked_sub(self, other: Self) -> Option<Self>;
}

impl ReaderOffset for u64 {
    #[inline]
    fn from_u8(offset: u8) -> Self {
        u64::from(offset)
    }

    #[inline]
    fn from_u16(offset: u16) -> Self {
        u64::from(offset)
    }

    #[inline]
    fn from_i16(offset: i16) -> Self {
        offset as u64
    }

    #[inline]
    fn from_u32(offset: u32) -> Self {
        u64::from(offset)
    }

    #[inline]
    fn from_u64(offset: u64) -> Result<Self> {
        Ok(offset)
    }

    #[inline]
    fn into_u64(self) -> u64 {
        self
    }

    #[inline]
    fn wrapping_add(self, other: Self) -> Self {
        self.wrapping_add(other)
    }

    #[inline]
    fn checked_sub(self, other: Self) -> Option<Self> {
        self.checked_sub(other)
    }
}

impl ReaderOffset for u32 {
    #[inline]
    fn from_u8(offset: u8) -> Self {
        u32::from(offset)
    }

    #[inline]
    fn from_u16(offset: u16) -> Self {
        u32::from(offset)
    }

    #[inline]
    fn from_i16(offset: i16) -> Self {
        offset as u32
    }

    #[inline]
    fn from_u32(offset: u32) -> Self {
        offset
    }

    #[inline]
    fn from_u64(offset64: u64) -> Result<Self> {
        let offset = offset64 as u32;
        if u64::from(offset) == offset64 {
            Ok(offset)
        } else {
            Err(Error::UnsupportedOffset)
        }
    }

    #[inline]
    fn into_u64(self) -> u64 {
        u64::from(self)
    }

    #[inline]
    fn wrapping_add(self, other: Self) -> Self {
        self.wrapping_add(other)
    }

    #[inline]
    fn checked_sub(self, other: Self) -> Option<Self> {
        self.checked_sub(other)
    }
}

impl ReaderOffset for usize {
    #[inline]
    fn from_u8(offset: u8) -> Self {
        offset as usize
    }

    #[inline]
    fn from_u16(offset: u16) -> Self {
        offset as usize
    }

    #[inline]
    fn from_i16(offset: i16) -> Self {
        offset as usize
    }

    #[inline]
    fn from_u32(offset: u32) -> Self {
        offset as usize
    }

    #[inline]
    fn from_u64(offset64: u64) -> Result<Self> {
        let offset = offset64 as usize;
        if offset as u64 == offset64 {
            Ok(offset)
        } else {
            Err(Error::UnsupportedOffset)
        }
    }

    #[inline]
    fn into_u64(self) -> u64 {
        self as u64
    }

    #[inline]
    fn wrapping_add(self, other: Self) -> Self {
        self.wrapping_add(other)
    }

    #[inline]
    fn checked_sub(self, other: Self) -> Option<Self> {
        self.checked_sub(other)
    }
}

/// A trait for reading the data from a DWARF section.
///
/// All read operations advance the section offset of the reader
/// unless specified otherwise.
///
/// ## Choosing a `Reader` Implementation
///
/// `gimli` comes with a few different `Reader` implementations and lets you
/// choose the one that is right for your use case. A `Reader` is essentially a
/// view into the raw bytes that make up some DWARF, but this view might borrow
/// the underlying data or use reference counting ownership, and it might be
/// thread safe or not.
///
/// | Implementation    | Ownership         | Thread Safe | Notes |
/// |:------------------|:------------------|:------------|:------|
/// | [`EndianSlice`](./struct.EndianSlice.html)        | Borrowed          | Yes         | Fastest, but requires that all of your code work with borrows. |
/// | [`EndianRcSlice`](./struct.EndianRcSlice.html)    | Reference counted | No          | Shared ownership via reference counting, which alleviates the borrow restrictions of `EndianSlice` but imposes reference counting increments and decrements. Cannot be sent across threads, because the reference count is not atomic. |
/// | [`EndianArcSlice`](./struct.EndianArcSlice.html)  | Reference counted | Yes         | The same as `EndianRcSlice`, but uses atomic reference counting, and therefore reference counting operations are slower but `EndianArcSlice`s may be sent across threads. |
/// | [`EndianReader<T>`](./struct.EndianReader.html)   | Same as `T`       | Same as `T` | Escape hatch for easily defining your own type of `Reader`. |
pub trait Reader: Debug + Clone {
    /// The endianity of bytes that are read.
    type Endian: Endianity;

    /// The type used for offsets and lengths.
    type Offset: ReaderOffset;

    /// Return the endianity of bytes that are read.
    fn endian(&self) -> Self::Endian;

    /// Return the number of bytes remaining.
    fn len(&self) -> Self::Offset;

    /// Set the number of bytes remaining to zero.
    fn empty(&mut self);

    /// Set the number of bytes remaining to the specified length.
    fn truncate(&mut self, len: Self::Offset) -> Result<()>;

    /// Return the offset of this reader's data relative to the start of
    /// the given base reader's data.
    ///
    /// May panic if this reader's data is not contained within the given
    /// base reader's data.
    fn offset_from(&self, base: &Self) -> Self::Offset;

    /// Return an identifier for the current reader offset.
    fn offset_id(&self) -> ReaderOffsetId;

    /// Return the offset corresponding to the given `id` if
    /// it is associated with this reader.
    fn lookup_offset_id(&self, id: ReaderOffsetId) -> Option<Self::Offset>;

    /// Find the index of the first occurence of the given byte.
    /// The offset of the reader is not changed.
    fn find(&self, byte: u8) -> Result<Self::Offset>;

    /// Discard the specified number of bytes.
    fn skip(&mut self, len: Self::Offset) -> Result<()>;

    /// Split a reader in two.
    ///
    /// A new reader is returned that can be used to read the next
    /// `len` bytes, and `self` is advanced so that it reads the remainder.
    fn split(&mut self, len: Self::Offset) -> Result<Self>;

    /// Return all remaining data as a clone-on-write slice.
    ///
    /// The slice will be borrowed where possible, but some readers may
    /// always return an owned vector.
    ///
    /// Does not advance the reader.
    fn to_slice(&self) -> Result<Cow<[u8]>>;

    /// Convert all remaining data to a clone-on-write string.
    ///
    /// The string will be borrowed where possible, but some readers may
    /// always return an owned string.
    ///
    /// Does not advance the reader.
    ///
    /// Returns an error if the data contains invalid characters.
    fn to_string(&self) -> Result<Cow<str>>;

    /// Convert all remaining data to a clone-on-write string, including invalid characters.
    ///
    /// The string will be borrowed where possible, but some readers may
    /// always return an owned string.
    ///
    /// Does not advance the reader.
    fn to_string_lossy(&self) -> Result<Cow<str>>;

    /// Read exactly `buf.len()` bytes into `buf`.
    fn read_slice(&mut self, buf: &mut [u8]) -> Result<()>;

    /// Read a u8 array.
    #[inline]
    fn read_u8_array<A>(&mut self) -> Result<A>
    where
        A: Sized + Default + AsMut<[u8]>,
    {
        let mut val = Default::default();
        self.read_slice(<A as AsMut<[u8]>>::as_mut(&mut val))?;
        Ok(val)
    }

    /// Return true if the number of bytes remaining is zero.
    #[inline]
    fn is_empty(&self) -> bool {
        self.len() == Self::Offset::from_u8(0)
    }

    /// Read a u8.
    #[inline]
    fn read_u8(&mut self) -> Result<u8> {
        let a: [u8; 1] = self.read_u8_array()?;
        Ok(a[0])
    }

    /// Read an i8.
    #[inline]
    fn read_i8(&mut self) -> Result<i8> {
        let a: [u8; 1] = self.read_u8_array()?;
        Ok(a[0] as i8)
    }

    /// Read a u16.
    #[inline]
    fn read_u16(&mut self) -> Result<u16> {
        let a: [u8; 2] = self.read_u8_array()?;
        Ok(self.endian().read_u16(&a))
    }

    /// Read an i16.
    #[inline]
    fn read_i16(&mut self) -> Result<i16> {
        let a: [u8; 2] = self.read_u8_array()?;
        Ok(self.endian().read_i16(&a))
    }

    /// Read a u32.
    #[inline]
    fn read_u32(&mut self) -> Result<u32> {
        let a: [u8; 4] = self.read_u8_array()?;
        Ok(self.endian().read_u32(&a))
    }

    /// Read an i32.
    #[inline]
    fn read_i32(&mut self) -> Result<i32> {
        let a: [u8; 4] = self.read_u8_array()?;
        Ok(self.endian().read_i32(&a))
    }

    /// Read a u64.
    #[inline]
    fn read_u64(&mut self) -> Result<u64> {
        let a: [u8; 8] = self.read_u8_array()?;
        Ok(self.endian().read_u64(&a))
    }

    /// Read an i64.
    #[inline]
    fn read_i64(&mut self) -> Result<i64> {
        let a: [u8; 8] = self.read_u8_array()?;
        Ok(self.endian().read_i64(&a))
    }

    /// Read a f32.
    #[inline]
    fn read_f32(&mut self) -> Result<f32> {
        let a: [u8; 4] = self.read_u8_array()?;
        Ok(self.endian().read_f32(&a))
    }

    /// Read a f64.
    #[inline]
    fn read_f64(&mut self) -> Result<f64> {
        let a: [u8; 8] = self.read_u8_array()?;
        Ok(self.endian().read_f64(&a))
    }

    /// Read an unsigned n-bytes integer u64.
    ///
    /// # Panics
    ///
    /// Panics when nbytes < 1 or nbytes > 8
    #[inline]
    fn read_uint(&mut self, n: usize) -> Result<u64> {
        let mut buf = [0; 8];
        self.read_slice(&mut buf[..n])?;
        Ok(self.endian().read_uint(&buf[..n]))
    }

    /// Read a null-terminated slice, and return it (excluding the null).
    fn read_null_terminated_slice(&mut self) -> Result<Self> {
        let idx = self.find(0)?;
        let val = self.split(idx)?;
        self.skip(Self::Offset::from_u8(1))?;
        Ok(val)
    }

    /// Read an unsigned LEB128 encoded integer.
    fn read_uleb128(&mut self) -> Result<u64> {
        leb128::read::unsigned(self)
    }

    /// Read an unsigned LEB128 encoded u16.
    fn read_uleb128_u16(&mut self) -> Result<u16> {
        leb128::read::u16(self)
    }

    /// Read a signed LEB128 encoded integer.
    fn read_sleb128(&mut self) -> Result<i64> {
        leb128::read::signed(self)
    }

    /// Read an initial length field.
    ///
    /// This field is encoded as either a 32-bit length or
    /// a 64-bit length, and the returned `Format` indicates which.
    fn read_initial_length(&mut self) -> Result<(Self::Offset, Format)> {
        const MAX_DWARF_32_UNIT_LENGTH: u32 = 0xffff_fff0;
        const DWARF_64_INITIAL_UNIT_LENGTH: u32 = 0xffff_ffff;

        let val = self.read_u32()?;
        if val < MAX_DWARF_32_UNIT_LENGTH {
            Ok((Self::Offset::from_u32(val), Format::Dwarf32))
        } else if val == DWARF_64_INITIAL_UNIT_LENGTH {
            let val = self.read_u64().and_then(Self::Offset::from_u64)?;
            Ok((val, Format::Dwarf64))
        } else {
            Err(Error::UnknownReservedLength)
        }
    }

    /// Read an address-sized integer, and return it as a `u64`.
    fn read_address(&mut self, address_size: u8) -> Result<u64> {
        match address_size {
            1 => self.read_u8().map(u64::from),
            2 => self.read_u16().map(u64::from),
            4 => self.read_u32().map(u64::from),
            8 => self.read_u64(),
            otherwise => Err(Error::UnsupportedAddressSize(otherwise)),
        }
    }

    /// Parse a word-sized integer according to the DWARF format.
    ///
    /// These are always used to encode section offsets or lengths,
    /// and so have a type of `Self::Offset`.
    fn read_word(&mut self, format: Format) -> Result<Self::Offset> {
        match format {
            Format::Dwarf32 => self.read_u32().map(Self::Offset::from_u32),
            Format::Dwarf64 => self.read_u64().and_then(Self::Offset::from_u64),
        }
    }

    /// Parse a word-sized section length according to the DWARF format.
    #[inline]
    fn read_length(&mut self, format: Format) -> Result<Self::Offset> {
        self.read_word(format)
    }

    /// Parse a word-sized section offset according to the DWARF format.
    #[inline]
    fn read_offset(&mut self, format: Format) -> Result<Self::Offset> {
        self.read_word(format)
    }

    /// Parse a section offset of the given size.
    ///
    /// This is used for `DW_FORM_ref_addr` values in DWARF version 2.
    fn read_sized_offset(&mut self, size: u8) -> Result<Self::Offset> {
        match size {
            1 => self.read_u8().map(u64::from),
            2 => self.read_u16().map(u64::from),
            4 => self.read_u32().map(u64::from),
            8 => self.read_u64(),
            otherwise => Err(Error::UnsupportedOffsetSize(otherwise)),
        }
        .and_then(Self::Offset::from_u64)
    }
}