1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
// Copyright 2019 Parity Technologies (UK) Ltd. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. //! Contains some helper futures for creating upgrades. use futures::prelude::*; use std::{error, fmt, io}; // TODO: these methods could be on an Ext trait to AsyncWrite /// Send a message to the given socket, then shuts down the writing side. /// /// > **Note**: Prepends a variable-length prefix indicate the length of the message. This is /// > compatible with what `read_one` expects. pub async fn write_one(socket: &mut (impl AsyncWrite + Unpin), data: impl AsRef<[u8]>) -> Result<(), io::Error> { write_varint(socket, data.as_ref().len()).await?; socket.write_all(data.as_ref()).await?; socket.close().await?; Ok(()) } /// Send a message to the given socket with a length prefix appended to it. Also flushes the socket. /// /// > **Note**: Prepends a variable-length prefix indicate the length of the message. This is /// > compatible with what `read_one` expects. pub async fn write_with_len_prefix(socket: &mut (impl AsyncWrite + Unpin), data: impl AsRef<[u8]>) -> Result<(), io::Error> { write_varint(socket, data.as_ref().len()).await?; socket.write_all(data.as_ref()).await?; socket.flush().await?; Ok(()) } /// Writes a variable-length integer to the `socket`. /// /// > **Note**: Does **NOT** flush the socket. pub async fn write_varint(socket: &mut (impl AsyncWrite + Unpin), len: usize) -> Result<(), io::Error> { let mut len_data = unsigned_varint::encode::usize_buffer(); let encoded_len = unsigned_varint::encode::usize(len, &mut len_data).len(); socket.write_all(&len_data[..encoded_len]).await?; Ok(()) } /// Reads a variable-length integer from the `socket`. /// /// As a special exception, if the `socket` is empty and EOFs right at the beginning, then we /// return `Ok(0)`. /// /// > **Note**: This function reads bytes one by one from the `socket`. It is therefore encouraged /// > to use some sort of buffering mechanism. pub async fn read_varint(socket: &mut (impl AsyncRead + Unpin)) -> Result<usize, io::Error> { let mut buffer = unsigned_varint::encode::usize_buffer(); let mut buffer_len = 0; loop { match socket.read(&mut buffer[buffer_len..buffer_len+1]).await? { 0 => { // Reaching EOF before finishing to read the length is an error, unless the EOF is // at the very beginning of the substream, in which case we assume that the data is // empty. if buffer_len == 0 { return Ok(0); } else { return Err(io::ErrorKind::UnexpectedEof.into()); } } n => debug_assert_eq!(n, 1), } buffer_len += 1; match unsigned_varint::decode::usize(&buffer[..buffer_len]) { Ok((len, _)) => return Ok(len), Err(unsigned_varint::decode::Error::Overflow) => { return Err(io::Error::new( io::ErrorKind::InvalidData, "overflow in variable-length integer" )); } // TODO: why do we have a `__Nonexhaustive` variant in the error? I don't know how to process it // Err(unsigned_varint::decode::Error::Insufficient) => {} Err(_) => {} } } } /// Reads a length-prefixed message from the given socket. /// /// The `max_size` parameter is the maximum size in bytes of the message that we accept. This is /// necessary in order to avoid DoS attacks where the remote sends us a message of several /// gigabytes. /// /// > **Note**: Assumes that a variable-length prefix indicates the length of the message. This is /// > compatible with what `write_one` does. pub async fn read_one(socket: &mut (impl AsyncRead + Unpin), max_size: usize) -> Result<Vec<u8>, ReadOneError> { let len = read_varint(socket).await?; if len > max_size { return Err(ReadOneError::TooLarge { requested: len, max: max_size, }); } let mut buf = vec![0; len]; socket.read_exact(&mut buf).await?; Ok(buf) } /// Error while reading one message. #[derive(Debug)] pub enum ReadOneError { /// Error on the socket. Io(std::io::Error), /// Requested data is over the maximum allowed size. TooLarge { /// Size requested by the remote. requested: usize, /// Maximum allowed. max: usize, }, } impl From<std::io::Error> for ReadOneError { fn from(err: std::io::Error) -> ReadOneError { ReadOneError::Io(err) } } impl fmt::Display for ReadOneError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match *self { ReadOneError::Io(ref err) => write!(f, "{}", err), ReadOneError::TooLarge { .. } => write!(f, "Received data size over maximum"), } } } impl error::Error for ReadOneError { fn source(&self) -> Option<&(dyn error::Error + 'static)> { match *self { ReadOneError::Io(ref err) => Some(err), ReadOneError::TooLarge { .. } => None, } } } #[cfg(test)] mod tests { use super::*; #[test] fn write_one_works() { let data = (0..rand::random::<usize>() % 10_000) .map(|_| rand::random::<u8>()) .collect::<Vec<_>>(); let mut out = vec![0; 10_000]; futures::executor::block_on( write_one(&mut futures::io::Cursor::new(&mut out[..]), data.clone()) ).unwrap(); let (out_len, out_data) = unsigned_varint::decode::usize(&out).unwrap(); assert_eq!(out_len, data.len()); assert_eq!(&out_data[..out_len], &data[..]); } // TODO: rewrite these tests /* #[test] fn read_one_works() { let original_data = (0..rand::random::<usize>() % 10_000) .map(|_| rand::random::<u8>()) .collect::<Vec<_>>(); let mut len_buf = unsigned_varint::encode::usize_buffer(); let len_buf = unsigned_varint::encode::usize(original_data.len(), &mut len_buf); let mut in_buffer = len_buf.to_vec(); in_buffer.extend_from_slice(&original_data); let future = read_one_then(Cursor::new(in_buffer), 10_000, (), move |out, ()| -> Result<_, ReadOneError> { assert_eq!(out, original_data); Ok(()) }); futures::executor::block_on(future).unwrap(); } #[test] fn read_one_zero_len() { let future = read_one_then(Cursor::new(vec![0]), 10_000, (), move |out, ()| -> Result<_, ReadOneError> { assert!(out.is_empty()); Ok(()) }); futures::executor::block_on(future).unwrap(); } #[test] fn read_checks_length() { let mut len_buf = unsigned_varint::encode::u64_buffer(); let len_buf = unsigned_varint::encode::u64(5_000, &mut len_buf); let mut in_buffer = len_buf.to_vec(); in_buffer.extend((0..5000).map(|_| 0)); let future = read_one_then(Cursor::new(in_buffer), 100, (), move |_, ()| -> Result<_, ReadOneError> { Ok(()) }); match futures::executor::block_on(future) { Err(ReadOneError::TooLarge { .. }) => (), _ => panic!(), } } #[test] fn read_one_accepts_empty() { let future = read_one_then(Cursor::new([]), 10_000, (), move |out, ()| -> Result<_, ReadOneError> { assert!(out.is_empty()); Ok(()) }); futures::executor::block_on(future).unwrap(); } #[test] fn read_one_eof_before_len() { let future = read_one_then(Cursor::new([0x80]), 10_000, (), move |_, ()| -> Result<(), ReadOneError> { unreachable!() }); match futures::executor::block_on(future) { Err(ReadOneError::Io(ref err)) if err.kind() == io::ErrorKind::UnexpectedEof => (), _ => panic!() } }*/ }