1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
/*!
  Crate `linregress` provides an easy to use implementation of ordinary
  least squared linear regression with some basic statistics.
  See [`RegressionModel`] for details.

  The builder [`FormulaRegressionBuilder`] is used to construct a model from a
  table of data and a R-style formula. Currently only very simple formulae are supported,
  see [`FormulaRegressionBuilder.formula`] for details.

  # Example

  ```
  use linregress::{FormulaRegressionBuilder, RegressionDataBuilder};

  # use failure::Error;
  # fn main() -> Result<(), Error> {
  let y = vec![1., 2. ,3. , 4., 5.];
  let x1 = vec![5., 4., 3., 2., 1.];
  let x2 = vec![729.53, 439.0367, 42.054, 1., 0.];
  let x3 = vec![258.589, 616.297, 215.061, 498.361, 0.];
  let data = vec![("Y", y), ("X1", x1), ("X2", x2), ("X3", x3)];
  let data = RegressionDataBuilder::new().build_from(data)?;
  let formula = "Y ~ X1 + X2 + X3";
  let model = FormulaRegressionBuilder::new()
      .data(&data)
      .formula(formula)
      .fit()?;
  let parameters = model.parameters;
  let standard_errors = model.se;
  let pvalues = model.pvalues;
  assert_eq!(
      parameters.pairs(),
      vec![
          ("X1".to_string(), -0.9999999999999745),
          ("X2".to_string(), 0.00000000000000005637851296924623),
          ("X3".to_string(), 0.00000000000000008283304597789254),
      ]
  );
  assert_eq!(
      standard_errors.pairs(),
      vec![
          ("X1".to_string(), 0.00000000000019226371555402852),
          ("X2".to_string(), 0.0000000000000008718958950659518),
          ("X3".to_string(), 0.0000000000000005323837152041135),
      ]
  );
  assert_eq!(
      pvalues.pairs(),
      vec![
          ("X1".to_string(), 0.00000000000012239888283055414),
          ("X2".to_string(), 0.9588921357097694),
          ("X3".to_string(), 0.9017368322742073),
      ]
  );
  # Ok(())
  # }
  ```

  [`RegressionModel`]: struct.RegressionModel.html
  [`FormulaRegressionBuilder`]: struct.FormulaRegressionBuilder.html
  [`FormulaRegressionBuilder.formula`]: struct.FormulaRegressionBuilder.html#method.formula
*/

#![warn(rust_2018_idioms)]
#![cfg_attr(feature = "unstable", feature(test))]
use std::borrow::Cow;
use std::collections::{BTreeSet, HashMap};
use std::iter;

use failure::{bail, ensure, err_msg, format_err, Error};
use nalgebra::{DMatrix, DVector, RowDVector};

use special_functions::stdtr;

mod special_functions;

/// A builder to create and fit a linear regression model.
///
/// Given a dataset and a regression formula this builder
/// will produce an ordinary least squared linear regression model.
///
/// See [`formula`] and [`data`] for details on how to configure this builder.
///
/// The pseudo inverse method is used to fit the model.
///
/// # Usage
///
/// ```
/// use linregress::{FormulaRegressionBuilder, RegressionDataBuilder};
///
/// # use failure::Error;
/// # fn main() -> Result<(), Error> {
/// let y = vec![1., 2. ,3., 4.];
/// let x = vec![4., 3., 2., 1.];
/// let data = vec![("Y", y), ("X", x)];
/// let data = RegressionDataBuilder::new().build_from(data)?;
/// let model = FormulaRegressionBuilder::new().data(&data).formula("Y ~ X").fit()?;
/// assert_eq!(model.parameters.intercept_value, 4.999999999999998);
/// assert_eq!(model.parameters.regressor_values[0], -0.9999999999999989);
/// assert_eq!(model.parameters.regressor_names[0], "X");
/// # Ok(())
/// # }
/// ```
///
/// [`formula`]: struct.FormulaRegressionBuilder.html#method.formula
/// [`data`]: struct.FormulaRegressionBuilder.html#method.data
#[derive(Debug, Clone)]
pub struct FormulaRegressionBuilder<'a> {
    data: Option<&'a RegressionData<'a>>,
    formula: Option<Cow<'a, str>>,
}
impl<'a> Default for FormulaRegressionBuilder<'a> {
    fn default() -> Self {
        FormulaRegressionBuilder::new()
    }
}
impl<'a> FormulaRegressionBuilder<'a> {
    /// Create as new FormulaRegressionBuilder with no data or formula set.
    pub fn new() -> Self {
        FormulaRegressionBuilder {
            data: None,
            formula: None,
        }
    }
    /// Set the data to be used for the regression.
    ///
    /// The data has to be given as a reference to a [`RegressionData`] struct.
    /// See [`RegressionDataBuilder`] for details.
    ///
    /// [`RegressionData`]: struct.RegressionData.html
    /// [`RegressionDataBuilder`]: struct.RegressionDataBuilder.html
    pub fn data(mut self, data: &'a RegressionData<'a>) -> Self {
        self.data = Some(data);
        self
    }
    /// Set the formula to use for the regression.
    ///
    /// The expected format is `<regressand> ~ <regressor 1> + <regressor 2>`.
    ///
    /// E.g. for a regressand named Y and three regressors named A, B and C
    /// the correct format would be `Y ~ A + B + C`.
    ///
    /// Note that there is currently no special support for categorical variables.
    /// So if you have a categorical variable with more than two distinct values
    /// or values that are not `0` and `1` you will need to perform "dummy coding" yourself.
    pub fn formula<T: Into<Cow<'a, str>>>(mut self, formula: T) -> Self {
        self.formula = Some(formula.into());
        self
    }
    /// Fits the model and returns a [`RegressionModel`] if successful.
    /// You need to set the data with [`data`] and a formula with [`formula`]
    /// before you can use it.
    ///
    /// [`RegressionModel`]: struct.RegressionModel.html
    /// [`data`]: struct.FormulaRegressionBuilder.html#method.data
    /// [`formula`]: struct.FormulaRegressionBuilder.html#method.formula
    pub fn fit(self) -> Result<RegressionModel, Error> {
        let FittingData(input_vector, output_matrix, outputs) =
            Self::get_matrices_and_regressor_names(self)?;
        RegressionModel::try_from_matrices_and_regressor_names(input_vector, output_matrix, outputs)
    }
    /// Like [`fit`] but does not perfom any statistics on the resulting model.
    /// Returns a [`RegressionParameters`] struct containing the model parameters
    /// if successfull.
    ///
    /// This is usefull if you do not care about the statistics or the model and data
    /// you want to fit result in too few residual degrees of freedom to perform
    /// statistics.
    ///
    /// [`fit`]: struct.FormulaRegressionBuilder.html#method.fit
    /// [`RegressionParameters`]: struct.RegressionParameters.html
    pub fn fit_without_statistics(self) -> Result<RegressionParameters, Error> {
        let FittingData(input_vector, output_matrix, output_names) =
            Self::get_matrices_and_regressor_names(self)?;
        let low_level_result = fit_ols_pinv(input_vector, output_matrix)?;
        let parameters = low_level_result.params;
        let intercept = parameters[0];
        let slopes: Vec<_> = parameters.iter().cloned().skip(1).collect();
        ensure!(
            output_names.len() == slopes.len(),
            "Number of slopes and output names is inconsistent"
        );
        Ok(RegressionParameters {
            intercept_value: intercept,
            regressor_values: slopes,
            regressor_names: output_names.to_vec(),
        })
    }
    fn get_matrices_and_regressor_names(self) -> Result<FittingData, Error> {
        let data: Result<_, Error> = self
            .data
            .ok_or_else(|| err_msg("Cannot fit model without data"));
        let formula: Result<_, Error> = self
            .formula
            .ok_or_else(|| err_msg("Cannot fit model without formula"));
        let data = &data?.data;
        let formula = formula?;
        let split_formula: Vec<_> = formula.split('~').collect();
        ensure!(
            split_formula.len() == 2,
            "Invalid formula. Expected formula of the form 'y ~ x1 + x2'"
        );
        let input = split_formula[0].trim();
        let outputs: Vec<_> = split_formula[1]
            .split('+')
            .map(str::trim)
            .filter(|x| *x != "")
            .collect();
        ensure!(
            !outputs.is_empty(),
            "Invalid formula. Expected formula of the form 'y ~ x1 + x2'"
        );
        let input_vector = data
            .get(input)
            .ok_or_else(|| format_err!("{} not found in data", input))?;
        let input_vector = RowDVector::from_vec(input_vector.to_vec());
        let mut output_matrix = Vec::new();
        // Add column of all ones as the first column of the matrix
        let all_ones_column = iter::repeat(1.).take(input_vector.len());
        output_matrix.extend(all_ones_column);
        // Add each input as a new column of the matrix
        for output in outputs.to_owned() {
            let output_vec = data
                .get(output)
                .ok_or_else(|| format_err!("{} not found in data", output))?;
            ensure!(
                output_vec.len() == input_vector.len(),
                "Regressor dimensions for {} do not match regressand dimensions",
                output
            );
            output_matrix.extend(output_vec.iter());
        }
        let output_matrix = DMatrix::from_vec(input_vector.len(), outputs.len() + 1, output_matrix);
        let outputs: Vec<_> = outputs.iter().map(|x| x.to_string()).collect();
        Ok(FittingData(input_vector, output_matrix, outputs))
    }
}

/// A simple tuple struct to reduce the type complxity of the
/// return type of get_matrices_and_regressor_names.
#[derive(Debug, Clone)]
struct FittingData(RowDVector<f64>, DMatrix<f64>, Vec<String>);

/// A container struct for the regression data.
///
/// This struct is obtained using a [`RegressionDataBuilder`].
///
/// [`RegressionDataBuilder`]: struct.RegressionDataBuilder.html
#[derive(Debug, Clone)]
pub struct RegressionData<'a> {
    data: HashMap<Cow<'a, str>, Vec<f64>>,
}

impl<'a> RegressionData<'a> {
    /// Constructs a new `RegressionData` struct from any collection that
    /// implements the `IntoIterator` trait.
    ///
    /// The iterator must consist of tupels of the form `(S, Vec<f64>)` where
    /// `S` is a type that can be converted to a `Cow<'a, str>`.
    ///
    /// `invalid_value_handling` specifies what to do if invalid data is encountered.
    fn new<I, S>(
        data: I,
        invalid_value_handling: InvalidValueHandling,
    ) -> Result<RegressionData<'a>, Error>
    where
        I: IntoIterator<Item = (S, Vec<f64>)>,
        S: Into<Cow<'a, str>>,
    {
        let temp: HashMap<_, _> = data
            .into_iter()
            .map(|(key, value)| (key.into(), value))
            .collect();
        let first_key = temp.keys().nth(0);
        ensure!(first_key.is_some(), "The data contains no columns.");
        let first_key = first_key.unwrap();
        let first_len = temp[first_key].len();
        ensure!(first_len > 0, "The data contains an empty column.");
        for key in temp.keys() {
            let this_len = temp[key].len();
            ensure!(
                this_len == first_len,
                "The lengths of the columns in the given data are inconsistent."
            );
            ensure!(
                !key.contains('~') && !key.contains('+'),
                "The column names may not contain `~` or `+`, because they are used \
                 as separators in the formula."
            );
        }
        if Self::check_if_all_columns_are_equal(&temp) {
            bail!(
                "All input columns contain only equal values. Fitting this model would lead \
                 to invalid statistics."
            )
        }
        if Self::check_if_data_is_valid(&temp) {
            return Ok(Self { data: temp });
        }
        match invalid_value_handling {
            InvalidValueHandling::ReturnError => bail!(
                "The data contains a non real value (NaN or infinity or negative infinity). \
                 If you would like to silently drop these values configure the builder with \
                 InvalidValueHandling::DropInvalid."
            ),
            InvalidValueHandling::DropInvalid => {
                let temp = Self::drop_invalid_values(temp);
                let first_key = temp.keys().nth(0).expect("Cleaned data has no columns.");
                let first_len = temp[first_key].len();
                ensure!(first_len > 0, "The cleaned data is empty.");
                Ok(Self { data: temp })
            }
            _ => bail!("Unkown InvalidValueHandling option"),
        }
    }
    fn check_if_all_columns_are_equal(data: &HashMap<Cow<'a, str>, Vec<f64>>) -> bool {
        for column in data.values() {
            if column.len() < 1 {
                return false;
            }
            let first_iter = iter::repeat(&column[0]).take(column.len());
            if !first_iter.eq(column.iter()) {
                return false;
            }
        }
        true
    }
    fn check_if_data_is_valid(data: &HashMap<Cow<'a, str>, Vec<f64>>) -> bool {
        for column in data.values() {
            if column.iter().any(|x| !x.is_finite()) {
                return false;
            }
        }
        true
    }
    fn drop_invalid_values(
        data: HashMap<Cow<'a, str>, Vec<f64>>,
    ) -> HashMap<Cow<'a, str>, Vec<f64>> {
        let mut invalid_rows: BTreeSet<usize> = BTreeSet::new();
        for column in data.values() {
            for (index, value) in column.iter().enumerate() {
                if !value.is_finite() {
                    invalid_rows.insert(index);
                }
            }
        }
        let mut cleaned_data = HashMap::new();
        for (key, mut column) in data {
            for index in invalid_rows.iter().rev() {
                column.remove(*index);
            }
            cleaned_data.insert(key, column);
        }
        cleaned_data
    }
}

/// A builder to create a RegressionData struct for use with a [`FormulaRegressionBuilder`].
///
/// [`FormulaRegressionBuilder`]: struct.FormulaRegressionBuilder.html
#[derive(Debug, Clone, Copy)]
pub struct RegressionDataBuilder {
    handle_invalid_values: InvalidValueHandling,
}

impl Default for RegressionDataBuilder {
    fn default() -> RegressionDataBuilder {
        RegressionDataBuilder {
            handle_invalid_values: InvalidValueHandling::default(),
        }
    }
}

impl RegressionDataBuilder {
    /// Create a new [`RegressionDataBuilder`].
    ///
    /// [`RegressionDataBuilder`]: struct.RegressionDataBuilder.html
    pub fn new() -> Self {
        Self::default()
    }
    /// Configure how to handle non real `f64` values (NaN or infinity or negative infinity) using
    /// a variant of the [`InvalidValueHandling`] enum.
    ///
    /// The default value is [`ReturnError`].
    ///
    /// # Example
    /// ```
    /// use linregress::{InvalidValueHandling, RegressionDataBuilder};
    ///
    /// # use failure::Error;
    /// # fn main() -> Result<(), Error> {
    /// let builder = RegressionDataBuilder::new();
    /// let builder = builder.invalid_value_handling(InvalidValueHandling::DropInvalid);
    /// # Ok(())
    /// # }
    /// ```
    ///
    /// [`InvalidValueHandling`]: enum.InvalidValueHandling.html
    /// [`ReturnError`]: enum.InvalidValueHandling.html#variant.ReturnError
    pub fn invalid_value_handling(mut self, setting: InvalidValueHandling) -> Self {
        self.handle_invalid_values = setting;
        self
    }
    /// Build a [`RegressionData`] struct from the given data.
    ///
    /// Any type that implements the [`IntoIterator`] trait can be used for the data.
    /// This could for example be a [`Hashmap`] or a [`Vec`].
    ///
    /// The iterator must consist of tupels of the form `(S, Vec<f64>)` where
    /// `S` is a type that implements `Into<Cow<str>>`, such as [`String`] or [`str`].
    ///
    /// You can think of this format as the representation of a table of data where
    /// each tuple `(S, Vec<f64>)` represents a column. The `S` is the header or label of the
    /// column and the `Vec<f64>` contains the data of the column.
    ///
    /// Because `~` and `+` are used as separators in the formula they may not be used in the name
    /// of a data column.
    ///
    /// # Example
    ///
    /// ```
    /// use std::collections::HashMap;
    /// use linregress::RegressionDataBuilder;
    ///
    /// # use failure::Error;
    /// # fn main() -> Result<(), Error> {
    /// let mut data1 = HashMap::new();
    /// data1.insert("Y", vec![1., 2., 3., 4.]);
    /// data1.insert("X", vec![4., 3., 2., 1.]);
    /// let regression_data1 = RegressionDataBuilder::new().build_from(data1)?;
    ///
    /// let y = vec![1., 2., 3., 4.];
    /// let x = vec![4., 3., 2., 1.];
    /// let data2 = vec![("X", x), ("Y", y)];
    /// let regression_data2 = RegressionDataBuilder::new().build_from(data2)?;
    /// # Ok(())
    /// # }
    /// ```
    ///
    /// [`RegressionData`]: struct.RegressionData.html
    /// [`IntoIterator`]: https://doc.rust-lang.org/std/iter/trait.IntoIterator.html
    /// [`Hashmap`]: https://doc.rust-lang.org/std/collections/struct.HashMap.html
    /// [`Vec`]: https://doc.rust-lang.org/std/vec/struct.Vec.html
    /// [`String`]: https://doc.rust-lang.org/std/string/struct.String.html
    /// [`str`]: https://doc.rust-lang.org/std/primitive.str.html
    pub fn build_from<'a, I, S>(self, data: I) -> Result<RegressionData<'a>, Error>
    where
        I: IntoIterator<Item = (S, Vec<f64>)>,
        S: Into<Cow<'a, str>>,
    {
        Ok(RegressionData::new(data, self.handle_invalid_values)?)
    }
}

/// How to proceed if given non real `f64` values (NaN or infinity or negative infinity).
///
/// Used with [`RegressionDataBuilder.invalid_value_handling`]
///
/// The default is [`ReturnError`].
///
/// [`RegressionDataBuilder.invalid_value_handling`]: struct.RegressionDataBuilder.html#method.invalid_value_handling
/// [`ReturnError`]: enum.InvalidValueHandling.html#variant.ReturnError
#[derive(Debug, Clone, Copy)]
pub enum InvalidValueHandling {
    /// Return an error to the caller.
    ReturnError,
    /// Drop the columns containing the invalid values.
    DropInvalid,
    /// Destructuring should not be exhaustive
    #[doc(hidden)]
    __Nonexhaustive,
}

impl Default for InvalidValueHandling {
    fn default() -> InvalidValueHandling {
        InvalidValueHandling::ReturnError
    }
}

/// A fitted regression model.
///
/// Is the result of [`FormulaRegressionBuilder.fit()`].
///
/// If a field has only one value for the model it is given as `f64`.
///
/// Otherwise it is given as a [`RegressionParameters`] struct.
///
///[`RegressionParameters`]: struct.RegressionParameters.html
///[`FormulaRegressionBuilder.fit()`]: struct.FormulaRegressionBuilder.html#method.fit
#[derive(Debug, Clone)]
pub struct RegressionModel {
    /// The model's intercept and slopes (also known as betas).
    pub parameters: RegressionParameters,
    /// The standard errors of the parameter estimates.
    pub se: RegressionParameters,
    /// Sum of squared residuals.
    pub ssr: f64,
    /// R-squared of the model.
    pub rsquared: f64,
    /// Adjusted R-squared of the model.
    pub rsquared_adj: f64,
    /// The two-tailed p-values for the t-statistics of the params.
    pub pvalues: RegressionParameters,
    /// The residuals of the model.
    pub residuals: RegressionParameters,
    ///  A scale factor for the covariance matrix.
    ///
    ///  Note that the square root of `scale` is often
    ///  called the standard error of the regression.
    pub scale: f64,
}
impl RegressionModel {
    fn try_from_matrices_and_regressor_names<I: IntoIterator<Item = String>>(
        inputs: RowDVector<f64>,
        outputs: DMatrix<f64>,
        output_names: I,
    ) -> Result<Self, Error> {
        let low_level_result = fit_ols_pinv(inputs.to_owned(), outputs.to_owned())?;
        let parameters = low_level_result.params;
        let singular_values = low_level_result.singular_values;
        let normalized_cov_params = low_level_result.normalized_cov_params;
        let diag = DMatrix::from_diagonal(&singular_values);
        let rank = &diag.rank(0.0);
        let input_vec: Vec<_> = inputs.iter().cloned().collect();
        let input_matrix = DMatrix::from_vec(inputs.len(), 1, input_vec);
        let residuals = &input_matrix - (outputs * parameters.to_owned());
        let ssr = residuals.dot(&residuals);
        let n = inputs.ncols();
        let df_resid = n - rank;
        ensure!(
            df_resid >= 1,
            "There are not enough residual degrees of freedom to perform statistics on this model"
        );
        let scale = residuals.dot(&residuals) / df_resid as f64;
        let cov_params = normalized_cov_params.to_owned() * scale;
        let se = get_se_from_cov_params(&cov_params)?;
        let centered_input_matrix = subtract_value_from_matrix(&input_matrix, input_matrix.mean());
        let centered_tss = &centered_input_matrix.dot(&centered_input_matrix);
        let rsquared = 1. - (ssr / centered_tss);
        let rsquared_adj = 1. - ((n - 1) as f64 / df_resid as f64 * (1. - rsquared));
        let tvalues: Vec<_> = matrix_as_vec(&parameters)
            .iter()
            .zip(matrix_as_vec(&se))
            .map(|(x, y)| x / y)
            .collect();
        let pvalues: Vec<_> = tvalues
            .iter()
            .cloned()
            .map(|x| stdtr(df_resid as i64, -(x.abs())) * 2.)
            .collect();
        // Convert these from interal Matrix types to user facing types
        let intercept = parameters[0];
        let slopes: Vec<_> = parameters.iter().cloned().skip(1).collect();
        let output_names: Vec<_> = output_names.into_iter().collect();
        ensure!(
            output_names.len() == slopes.len(),
            "Number of slopes and output names is inconsistent"
        );
        let parameters = RegressionParameters {
            intercept_value: intercept,
            regressor_values: slopes,
            regressor_names: output_names.to_vec(),
        };
        let se: Vec<_> = se.iter().cloned().collect();
        let se = RegressionParameters {
            intercept_value: se[0],
            regressor_values: se.iter().cloned().skip(1).collect(),
            regressor_names: output_names.to_vec(),
        };
        let residuals: Vec<_> = residuals.iter().cloned().collect();
        let residuals = RegressionParameters {
            intercept_value: residuals[0],
            regressor_values: residuals.iter().cloned().skip(1).collect(),
            regressor_names: output_names.to_vec(),
        };
        let pvalues = RegressionParameters {
            intercept_value: pvalues[0],
            regressor_values: pvalues.iter().cloned().skip(1).collect(),
            regressor_names: output_names.to_vec(),
        };
        Ok(Self {
            parameters,
            se,
            ssr,
            rsquared,
            rsquared_adj,
            pvalues,
            residuals,
            scale,
        })
    }
}
/// A parameter of a fitted [`RegressionModel`] given for the intercept and each regressor.
///
/// The values and names of the regressors are given in the same order.
///
/// You can obtain name value pairs using [`pairs`].
///
/// [`RegressionModel`]: struct.RegressionModel.html
/// [`pairs`]: struct.RegressionParameters.html#method.pairs
#[derive(Debug, Clone)]
pub struct RegressionParameters {
    pub intercept_value: f64,
    pub regressor_names: Vec<String>,
    pub regressor_values: Vec<f64>,
}
impl RegressionParameters {
    /// Returns the parameters as a Vec of tuples of the form `(name: String, value: f64)`.
    ///
    /// # Usage
    ///
    /// ```
    /// use linregress::{FormulaRegressionBuilder, RegressionDataBuilder};
    ///
    /// # use failure::Error;
    /// # fn main() -> Result<(), Error> {
    /// let y = vec![1.,2. ,3. , 4.];
    /// let x1 = vec![4., 3., 2., 1.];
    /// let x2 = vec![1., 2., 3., 4.];
    /// let data = vec![("Y", y), ("X1", x1), ("X2", x2)];
    /// let data = RegressionDataBuilder::new().build_from(data)?;
    /// let model = FormulaRegressionBuilder::new().data(&data).formula("Y ~ X1 + X2").fit()?;
    /// let pairs = model.parameters.pairs();
    /// assert_eq!(pairs[0], ("X1".to_string(), -0.0370370370370372));
    /// assert_eq!(pairs[1], ("X2".to_string(), 0.9629629629629629));
    /// # Ok(())
    /// # }
    /// ```
    pub fn pairs(self) -> Vec<(String, f64)> {
        self.regressor_names
            .iter()
            .zip(self.regressor_values)
            .map(|(x, y)| (x.to_owned(), y))
            .collect()
    }
}

/// Result of fitting a low level matrix based model
#[derive(Debug, Clone)]
struct LowLevelRegressionResult {
    params: DMatrix<f64>,
    singular_values: DVector<f64>,
    normalized_cov_params: DMatrix<f64>,
}

/// Performs ordinary least squared linear regression using the pseudo inverse method.
///
/// Returns a tuple `LowLevelRegressionResult`
fn fit_ols_pinv(
    inputs: RowDVector<f64>,
    outputs: DMatrix<f64>,
) -> Result<LowLevelRegressionResult, Error> {
    ensure!(
        !inputs.is_empty(),
        "Fitting the model failed because the input vector is empty"
    );
    ensure!(
        outputs.nrows() >= 1 && outputs.ncols() >= 1,
        "Fitting the model failed because the output matrix is empty"
    );
    let singular_values = outputs
        .to_owned()
        .try_svd(false, false, std::f64::EPSILON, 0)
        .ok_or_else(|| {
            err_msg("computing the singular-value decomposition of the output matrix failed")
        })?
        .singular_values;
    let pinv = outputs
        .pseudo_inverse(0.)
        .map_err(|_| err_msg("Taking the pinv of the output matrix failed"))?;
    let normalized_cov_params = &pinv * &pinv.transpose();
    let params = get_sum_of_products(&pinv, &inputs);
    ensure!(params.len() >= 2, "Invalid parameter matrix");
    Ok(LowLevelRegressionResult {
        params,
        singular_values,
        normalized_cov_params,
    })
}
/// Transforms a matrix into a flat Vec.
fn matrix_as_vec(matrix: &DMatrix<f64>) -> Vec<f64> {
    let mut vector = Vec::new();
    for row_index in 0..matrix.nrows() {
        let row = matrix.row(row_index);
        for i in row.iter() {
            vector.push(*i);
        }
    }
    vector
}
/// Subtracts `value` from all fields in `matrix` and returns the resulting new matrix.
fn subtract_value_from_matrix(matrix: &DMatrix<f64>, value: f64) -> DMatrix<f64> {
    let mut v = Vec::new();
    for row_index in 0..matrix.nrows() {
        let row = matrix.row(row_index);
        for i in row.iter().map(|i| i - value) {
            v.push(i);
        }
    }
    DMatrix::from_vec(matrix.nrows(), matrix.ncols(), v)
}
/// Calculates the standard errors given a model's covariate parameters
fn get_se_from_cov_params(matrix: &DMatrix<f64>) -> Result<DMatrix<f64>, Error> {
    let mut v = Vec::new();
    for row_index in 0..matrix.ncols() {
        let row = matrix.row(row_index);
        ensure!(row_index <= row.len(), "Matrix is not square");
        v.push(row[row_index].sqrt());
    }
    Ok(DMatrix::from_vec(matrix.ncols(), 1, v))
}
fn get_sum_of_products(matrix: &DMatrix<f64>, vector: &RowDVector<f64>) -> DMatrix<f64> {
    let mut v: Vec<f64> = Vec::new();
    for row_index in 0..matrix.nrows() {
        let row = matrix.row(row_index);
        let mut sum = 0.;
        for (x, y) in row.iter().zip(vector.iter()) {
            sum += x * y;
        }
        v.push(sum);
    }
    DMatrix::from_vec(matrix.nrows(), 1, v)
}
#[cfg(test)]
mod tests {
    use super::*;
    fn assert_almost_equal(a: f64, b: f64) {
        if (a - b).abs() > 1.0E-14 {
            panic!("\n{:?} vs\n{:?}", a, b);
        }
    }
    fn assert_slices_almost_equal(a: &[f64], b: &[f64]) {
        assert_eq!(a.len(), b.len());
        for (x, y) in a.iter().cloned().zip(b.iter().cloned()).collect::<Vec<_>>() {
            assert_almost_equal(x, y);
        }
    }
    #[test]
    fn test_pinv_with_formula_builder() {
        use std::collections::HashMap;
        let inputs = vec![1., 3., 4., 5., 2., 3., 4.];
        let outputs1 = vec![1., 2., 3., 4., 5., 6., 7.];
        let outputs2 = vec![7., 6., 5., 4., 3., 2., 1.];
        let mut data = HashMap::new();
        data.insert("Y", inputs);
        data.insert("X1", outputs1);
        data.insert("X2", outputs2);
        let data = RegressionDataBuilder::new().build_from(data).unwrap();
        let regression = FormulaRegressionBuilder::new()
            .data(&data)
            .formula("Y ~ X1 + X2")
            .fit()
            .expect("Fitting model failed");

        let model_parameters = vec![0.09523809523809523, 0.5059523809523809, 0.2559523809523808];
        let se = vec![
            0.015457637291218289,
            0.1417242813072997,
            0.14172428130729975,
        ];
        let ssr = 9.107142857142858;
        let rsquared = 0.16118421052631582;
        let rsquared_adj = -0.006578947368421018;
        let scale = 1.8214285714285716;
        let pvalues = vec![
            0.001639031204417556,
            0.016044083709847945,
            0.13074580446389245,
        ];
        let residuals = vec![
            -1.392857142857142,
            0.3571428571428581,
            1.1071428571428577,
            1.8571428571428577,
            -1.3928571428571423,
            -0.6428571428571423,
            0.10714285714285765,
        ];
        assert_almost_equal(regression.parameters.intercept_value, model_parameters[0]);
        assert_almost_equal(
            regression.parameters.regressor_values[0],
            model_parameters[1],
        );
        assert_almost_equal(
            regression.parameters.regressor_values[1],
            model_parameters[2],
        );
        assert_almost_equal(regression.se.intercept_value, se[0]);
        assert_slices_almost_equal(&regression.se.regressor_values, &se[1..]);
        assert_almost_equal(regression.ssr, ssr);
        assert_almost_equal(regression.rsquared, rsquared);
        assert_almost_equal(regression.rsquared_adj, rsquared_adj);
        assert_almost_equal(regression.pvalues.intercept_value, pvalues[0]);
        assert_slices_almost_equal(&regression.pvalues.regressor_values, &pvalues[1..]);
        assert_almost_equal(regression.residuals.intercept_value, residuals[0]);
        assert_slices_almost_equal(&regression.residuals.regressor_values, &residuals[1..]);
        assert_eq!(regression.scale, scale);
    }
    #[test]
    fn test_without_statistics() {
        use std::collections::HashMap;
        let inputs = vec![1., 3., 4., 5., 2., 3., 4.];
        let outputs1 = vec![1., 2., 3., 4., 5., 6., 7.];
        let outputs2 = vec![7., 6., 5., 4., 3., 2., 1.];
        let mut data = HashMap::new();
        data.insert("Y", inputs);
        data.insert("X1", outputs1);
        data.insert("X2", outputs2);
        let data = RegressionDataBuilder::new().build_from(data).unwrap();
        let regression = FormulaRegressionBuilder::new()
            .data(&data)
            .formula("Y ~ X1 + X2")
            .fit_without_statistics()
            .expect("Fitting model failed");
        let model_parameters = vec![0.09523809523809523, 0.5059523809523809, 0.2559523809523808];
        assert_almost_equal(regression.intercept_value, model_parameters[0]);
        assert_almost_equal(regression.regressor_values[0], model_parameters[1]);
        assert_almost_equal(regression.regressor_values[1], model_parameters[2]);
    }
    #[test]
    fn test_invalid_input_empty_matrix() {
        let y = vec![];
        let x1 = vec![];
        let x2 = vec![];
        let data = vec![("Y", y), ("X1", x1), ("X2", x2)];
        let data = RegressionDataBuilder::new().build_from(data);
        assert!(data.is_err());
    }
    #[test]
    fn test_invalid_input_wrong_shape_x() {
        let y = vec![1., 2., 3.];
        let x1 = vec![1., 2., 3.];
        let x2 = vec![1., 2.];
        let data = vec![("Y", y), ("X1", x1), ("X2", x2)];
        let data = RegressionDataBuilder::new().build_from(data);
        assert!(data.is_err());
    }
    #[test]
    fn test_invalid_input_wrong_shape_y() {
        let y = vec![1., 2., 3., 4.];
        let x1 = vec![1., 2., 3.];
        let x2 = vec![1., 2., 3.];
        let data = vec![("Y", y), ("X1", x1), ("X2", x2)];
        let data = RegressionDataBuilder::new().build_from(data);
        assert!(data.is_err());
    }
    #[test]
    fn test_invalid_input_nan() {
        let y1 = vec![1., 2., 3., 4.];
        let x1 = vec![1., 2., 3., std::f64::NAN];
        let data1 = vec![("Y", y1), ("X", x1)];
        let y2 = vec![1., 2., 3., std::f64::NAN];
        let x2 = vec![1., 2., 3., 4.];
        let data2 = vec![("Y", y2), ("X", x2)];
        let r_data1 = RegressionDataBuilder::new().build_from(data1.to_owned());
        let r_data2 = RegressionDataBuilder::new().build_from(data2.to_owned());
        assert!(r_data1.is_err());
        assert!(r_data2.is_err());
        let builder = RegressionDataBuilder::new();
        let builder = builder.invalid_value_handling(InvalidValueHandling::DropInvalid);
        let r_data1 = builder.build_from(data1);
        let r_data2 = builder.build_from(data2);
        assert!(r_data1.is_ok());
        assert!(r_data2.is_ok());
    }
    #[test]
    fn test_invalid_input_infinity() {
        let y1 = vec![1., 2., 3., 4.];
        let x1 = vec![1., 2., 3., std::f64::INFINITY];
        let data1 = vec![("Y", y1), ("X", x1)];
        let y2 = vec![1., 2., 3., std::f64::NEG_INFINITY];
        let x2 = vec![1., 2., 3., 4.];
        let data2 = vec![("Y", y2), ("X", x2)];
        let r_data1 = RegressionDataBuilder::new().build_from(data1.to_owned());
        let r_data2 = RegressionDataBuilder::new().build_from(data2.to_owned());
        assert!(r_data1.is_err());
        assert!(r_data2.is_err());
        let builder = RegressionDataBuilder::new();
        let builder = builder.invalid_value_handling(InvalidValueHandling::DropInvalid);
        let r_data1 = builder.build_from(data1);
        let r_data2 = builder.build_from(data2);
        assert!(r_data1.is_ok());
        assert!(r_data2.is_ok());
    }
    #[test]
    fn test_invalid_input_all_equal_columns() {
        let y = vec![38.0, 38.0, 38.0];
        let x = vec![42.0, 42.0, 42.0];
        let data = vec![("y", y), ("x", x)];
        let data = RegressionDataBuilder::new().build_from(data);
        assert!(data.is_err());
    }
    #[test]
    fn test_drop_invalid_values() {
        let mut data: HashMap<Cow<'_, str>, Vec<f64>> = HashMap::new();
        data.insert("Y".into(), vec![-1., -2., -3., -4.]);
        data.insert("foo".into(), vec![1., 2., 12., 4.]);
        data.insert("bar".into(), vec![1., 1., 7., 4.]);
        data.insert("baz".into(), vec![1.3333, 2.754, 3.12, 4.11]);
        assert_eq!(RegressionData::drop_invalid_values(data.to_owned()), data);
        data.insert(
            "invalid".into(),
            vec![std::f64::NAN, 42., std::f64::NEG_INFINITY, 23.11],
        );
        data.insert(
            "invalid2".into(),
            vec![1.337, -3.14, std::f64::INFINITY, 11.111111],
        );
        let mut ref_data: HashMap<Cow<'_, str>, Vec<f64>> = HashMap::new();
        ref_data.insert("Y".into(), vec![-2., -4.]);
        ref_data.insert("foo".into(), vec![2., 4.]);
        ref_data.insert("bar".into(), vec![1., 4.]);
        ref_data.insert("baz".into(), vec![2.754, 4.11]);
        ref_data.insert("invalid".into(), vec![42., 23.11]);
        ref_data.insert("invalid2".into(), vec![-3.14, 11.111111]);
        assert_eq!(
            ref_data,
            RegressionData::drop_invalid_values(data.to_owned())
        );
    }
    #[test]
    fn test_all_invalid_input() {
        let data = vec![
            ("Y", vec![1., 2., 3.]),
            ("X", vec![std::f64::NAN, std::f64::NAN, std::f64::NAN]),
        ];
        let builder = RegressionDataBuilder::new();
        let builder = builder.invalid_value_handling(InvalidValueHandling::DropInvalid);
        let r_data = builder.build_from(data);
        assert!(r_data.is_err());
    }
    #[test]
    fn test_invalid_column_names() {
        let data1 = vec![("x~f", vec![1., 2., 3.]), ("foo", vec![0., 0., 0.])];
        let data2 = vec![("foo", vec![1., 2., 3.]), ("foo+", vec![0., 0., 0.])];
        let builder = RegressionDataBuilder::new();
        assert!(builder.build_from(data1).is_err());
        assert!(builder.build_from(data2).is_err());
    }
}
#[cfg(all(feature = "unstable", test))]
mod bench {
    use super::*;
    extern crate test;
    use test::Bencher;
    #[bench]
    fn bench_with_stats(b: &mut Bencher) {
        let y = vec![1., 2., 3., 4., 5.];
        let x1 = vec![5., 4., 3., 2., 1.];
        let x2 = vec![729.53, 439.0367, 42.054, 1., 0.];
        let x3 = vec![258.589, 616.297, 215.061, 498.361, 0.];
        let data = vec![("Y", y), ("X1", x1), ("X2", x2), ("X3", x3)];
        let data = RegressionDataBuilder::new().build_from(data).unwrap();
        let formula = "Y ~ X1 + X2 + X3";
        b.iter(|| {
            FormulaRegressionBuilder::new()
                .data(&data)
                .formula(formula)
                .fit()
        });
    }
    #[bench]
    fn bench_without_stats(b: &mut Bencher) {
        let y = vec![1., 2., 3., 4., 5.];
        let x1 = vec![5., 4., 3., 2., 1.];
        let x2 = vec![729.53, 439.0367, 42.054, 1., 0.];
        let x3 = vec![258.589, 616.297, 215.061, 498.361, 0.];
        let data = vec![("Y", y), ("X1", x1), ("X2", x2), ("X3", x3)];
        let data = RegressionDataBuilder::new().build_from(data).unwrap();
        let formula = "Y ~ X1 + X2 + X3";
        b.iter(|| {
            FormulaRegressionBuilder::new()
                .data(&data)
                .formula(formula)
                .fit_without_statistics()
        });
    }
}