#[cfg(all(feature = "alloc", not(feature = "std")))]
use alloc::vec::Vec;
use num::{One, Zero};
use alga::general::{
AbstractGroup, AbstractGroupAbelian, AbstractLoop, AbstractMagma, AbstractModule,
AbstractMonoid, AbstractQuasigroup, AbstractSemigroup, Additive, ClosedAdd, ClosedMul,
ClosedNeg, Field, Identity, TwoSidedInverse, JoinSemilattice, Lattice, MeetSemilattice, Module,
Multiplicative, RingCommutative, ComplexField
};
use alga::linear::{
FiniteDimInnerSpace, FiniteDimVectorSpace, InnerSpace, NormedSpace, VectorSpace,
};
use crate::base::allocator::Allocator;
use crate::base::dimension::{Dim, DimName};
use crate::base::storage::{Storage, StorageMut};
use crate::base::{DefaultAllocator, MatrixMN, MatrixN, Scalar};
impl<N, R: DimName, C: DimName> Identity<Additive> for MatrixMN<N, R, C>
where
N: Scalar + Zero,
DefaultAllocator: Allocator<N, R, C>,
{
#[inline]
fn identity() -> Self {
Self::from_element(N::zero())
}
}
impl<N, R: DimName, C: DimName> AbstractMagma<Additive> for MatrixMN<N, R, C>
where
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, R, C>,
{
#[inline]
fn operate(&self, other: &Self) -> Self {
self + other
}
}
impl<N, R: DimName, C: DimName> TwoSidedInverse<Additive> for MatrixMN<N, R, C>
where
N: Scalar + ClosedNeg,
DefaultAllocator: Allocator<N, R, C>,
{
#[inline]
fn two_sided_inverse(&self) -> Self {
-self
}
#[inline]
fn two_sided_inverse_mut(&mut self) {
*self = -self.clone()
}
}
macro_rules! inherit_additive_structure(
($($marker: ident<$operator: ident> $(+ $bounds: ident)*),* $(,)*) => {$(
impl<N, R: DimName, C: DimName> $marker<$operator> for MatrixMN<N, R, C>
where N: Scalar + $marker<$operator> $(+ $bounds)*,
DefaultAllocator: Allocator<N, R, C> { }
)*}
);
inherit_additive_structure!(
AbstractSemigroup<Additive> + ClosedAdd,
AbstractMonoid<Additive> + Zero + ClosedAdd,
AbstractQuasigroup<Additive> + ClosedAdd + ClosedNeg,
AbstractLoop<Additive> + Zero + ClosedAdd + ClosedNeg,
AbstractGroup<Additive> + Zero + ClosedAdd + ClosedNeg,
AbstractGroupAbelian<Additive> + Zero + ClosedAdd + ClosedNeg
);
impl<N, R: DimName, C: DimName> AbstractModule for MatrixMN<N, R, C>
where
N: Scalar + RingCommutative,
DefaultAllocator: Allocator<N, R, C>,
{
type AbstractRing = N;
#[inline]
fn multiply_by(&self, n: N) -> Self {
self * n
}
}
impl<N, R: DimName, C: DimName> Module for MatrixMN<N, R, C>
where
N: Scalar + RingCommutative,
DefaultAllocator: Allocator<N, R, C>,
{
type Ring = N;
}
impl<N, R: DimName, C: DimName> VectorSpace for MatrixMN<N, R, C>
where
N: Scalar + Field,
DefaultAllocator: Allocator<N, R, C>,
{
type Field = N;
}
impl<N, R: DimName, C: DimName> FiniteDimVectorSpace for MatrixMN<N, R, C>
where
N: Scalar + Field,
DefaultAllocator: Allocator<N, R, C>,
{
#[inline]
fn dimension() -> usize {
R::dim() * C::dim()
}
#[inline]
fn canonical_basis_element(i: usize) -> Self {
assert!(i < Self::dimension(), "Index out of bound.");
let mut res = Self::zero();
unsafe {
*res.data.get_unchecked_linear_mut(i) = N::one();
}
res
}
#[inline]
fn dot(&self, other: &Self) -> N {
self.dot(other)
}
#[inline]
unsafe fn component_unchecked(&self, i: usize) -> &N {
self.data.get_unchecked_linear(i)
}
#[inline]
unsafe fn component_unchecked_mut(&mut self, i: usize) -> &mut N {
self.data.get_unchecked_linear_mut(i)
}
}
impl<N: ComplexField, R: DimName, C: DimName> NormedSpace for MatrixMN<N, R, C>
where DefaultAllocator: Allocator<N, R, C>
{
type RealField = N::RealField;
type ComplexField = N;
#[inline]
fn norm_squared(&self) -> N::RealField {
self.norm_squared()
}
#[inline]
fn norm(&self) -> N::RealField {
self.norm()
}
#[inline]
fn normalize(&self) -> Self {
self.normalize()
}
#[inline]
fn normalize_mut(&mut self) -> N::RealField {
self.normalize_mut()
}
#[inline]
fn try_normalize(&self, min_norm: N::RealField) -> Option<Self> {
self.try_normalize(min_norm)
}
#[inline]
fn try_normalize_mut(&mut self, min_norm: N::RealField) -> Option<N::RealField> {
self.try_normalize_mut(min_norm)
}
}
impl<N: ComplexField, R: DimName, C: DimName> InnerSpace for MatrixMN<N, R, C>
where DefaultAllocator: Allocator<N, R, C>
{
#[inline]
fn angle(&self, other: &Self) -> N::RealField {
self.angle(other)
}
#[inline]
fn inner_product(&self, other: &Self) -> N {
self.dotc(other)
}
}
impl<N: ComplexField, R: DimName, C: DimName> FiniteDimInnerSpace for MatrixMN<N, R, C>
where DefaultAllocator: Allocator<N, R, C>
{
#[inline]
fn orthonormalize(vs: &mut [Self]) -> usize {
let mut nbasis_elements = 0;
for i in 0..vs.len() {
{
let (elt, basis) = vs[..i + 1].split_last_mut().unwrap();
for basis_element in &basis[..nbasis_elements] {
*elt -= &*basis_element * elt.dot(basis_element)
}
}
if vs[i].try_normalize_mut(N::RealField::zero()).is_some() {
vs.swap(nbasis_elements, i);
nbasis_elements += 1;
if nbasis_elements == Self::dimension() {
break;
}
}
}
nbasis_elements
}
#[inline]
fn orthonormal_subspace_basis<F>(vs: &[Self], mut f: F)
where F: FnMut(&Self) -> bool {
assert!(
vs.len() <= Self::dimension(),
"The given set of vectors has no chance of being a free family."
);
match Self::dimension() {
1 => {
if vs.len() == 0 {
let _ = f(&Self::canonical_basis_element(0));
}
}
2 => {
if vs.len() == 0 {
let _ = f(&Self::canonical_basis_element(0))
&& f(&Self::canonical_basis_element(1));
} else if vs.len() == 1 {
let v = &vs[0];
let res = Self::from_column_slice(&[-v[1], v[0]]);
let _ = f(&res.normalize());
}
}
3 => {
if vs.len() == 0 {
let _ = f(&Self::canonical_basis_element(0))
&& f(&Self::canonical_basis_element(1))
&& f(&Self::canonical_basis_element(2));
} else if vs.len() == 1 {
let v = &vs[0];
let mut a;
if v[0].norm1() > v[1].norm1() {
a = Self::from_column_slice(&[v[2], N::zero(), -v[0]]);
} else {
a = Self::from_column_slice(&[N::zero(), -v[2], v[1]]);
};
let _ = a.normalize_mut();
if f(&a.cross(v)) {
let _ = f(&a);
}
} else if vs.len() == 2 {
let _ = f(&vs[0].cross(&vs[1]).normalize());
}
}
_ => {
#[cfg(any(feature = "std", feature = "alloc"))]
{
let mut known_basis = Vec::new();
for v in vs.iter() {
known_basis.push(v.normalize())
}
for i in 0..Self::dimension() - vs.len() {
let mut elt = Self::canonical_basis_element(i);
for v in &known_basis {
elt -= v * elt.dot(v)
}
if let Some(subsp_elt) = elt.try_normalize(N::RealField::zero()) {
if !f(&subsp_elt) {
return;
};
known_basis.push(subsp_elt);
}
}
}
#[cfg(all(not(feature = "std"), not(feature = "alloc")))]
{
panic!("Cannot compute the orthogonal subspace basis of a vector with a dimension greater than 3 \
if #![no_std] is enabled and the 'alloc' feature is not enabled.")
}
}
}
}
}
impl<N, D: DimName> Identity<Multiplicative> for MatrixN<N, D>
where
N: Scalar + Zero + One,
DefaultAllocator: Allocator<N, D, D>,
{
#[inline]
fn identity() -> Self {
Self::identity()
}
}
impl<N, D: DimName> AbstractMagma<Multiplicative> for MatrixN<N, D>
where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D>,
{
#[inline]
fn operate(&self, other: &Self) -> Self {
self * other
}
}
macro_rules! impl_multiplicative_structure(
($($marker: ident<$operator: ident> $(+ $bounds: ident)*),* $(,)*) => {$(
impl<N, D: DimName> $marker<$operator> for MatrixN<N, D>
where N: Scalar + Zero + One + ClosedAdd + ClosedMul + $marker<$operator> $(+ $bounds)*,
DefaultAllocator: Allocator<N, D, D> { }
)*}
);
impl_multiplicative_structure!(
AbstractSemigroup<Multiplicative>,
AbstractMonoid<Multiplicative> + One
);
impl<N, R: Dim, C: Dim> MeetSemilattice for MatrixMN<N, R, C>
where
N: Scalar + MeetSemilattice,
DefaultAllocator: Allocator<N, R, C>,
{
#[inline]
fn meet(&self, other: &Self) -> Self {
self.zip_map(other, |a, b| a.meet(&b))
}
}
impl<N, R: Dim, C: Dim> JoinSemilattice for MatrixMN<N, R, C>
where
N: Scalar + JoinSemilattice,
DefaultAllocator: Allocator<N, R, C>,
{
#[inline]
fn join(&self, other: &Self) -> Self {
self.zip_map(other, |a, b| a.join(&b))
}
}
impl<N, R: Dim, C: Dim> Lattice for MatrixMN<N, R, C>
where
N: Scalar + Lattice,
DefaultAllocator: Allocator<N, R, C>,
{
#[inline]
fn meet_join(&self, other: &Self) -> (Self, Self) {
let shape = self.data.shape();
assert!(
shape == other.data.shape(),
"Matrix meet/join error: mismatched dimensions."
);
let mut mres = unsafe { Self::new_uninitialized_generic(shape.0, shape.1) };
let mut jres = unsafe { Self::new_uninitialized_generic(shape.0, shape.1) };
for i in 0..shape.0.value() * shape.1.value() {
unsafe {
let mj = self
.data
.get_unchecked_linear(i)
.meet_join(other.data.get_unchecked_linear(i));
*mres.data.get_unchecked_linear_mut(i) = mj.0;
*jres.data.get_unchecked_linear_mut(i) = mj.1;
}
}
(mres, jres)
}
}