1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
use num::Zero;

use crate::allocator::Allocator;
use crate::{RealField, ComplexField};
use crate::storage::{Storage, StorageMut};
use crate::base::{DefaultAllocator, Matrix, Dim, MatrixMN};
use crate::constraint::{SameNumberOfRows, SameNumberOfColumns, ShapeConstraint};


// FIXME: this should be be a trait on alga?
/// A trait for abstract matrix norms.
///
/// This may be moved to the alga crate in the future.
pub trait Norm<N: ComplexField> {
    /// Apply this norm to the given matrix.
    fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::RealField
        where R: Dim, C: Dim, S: Storage<N, R, C>;
    /// Use the metric induced by this norm to compute the metric distance between the two given matrices.
    fn metric_distance<R1, C1, S1, R2, C2, S2>(&self, m1: &Matrix<N, R1, C1, S1>, m2: &Matrix<N, R2, C2, S2>) -> N::RealField
        where R1: Dim, C1: Dim, S1: Storage<N, R1, C1>,
              R2: Dim, C2: Dim, S2: Storage<N, R2, C2>,
              ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>;
}

/// Euclidean norm.
pub struct EuclideanNorm;
/// Lp norm.
pub struct LpNorm(pub i32);
/// L-infinite norm aka. Chebytchev norm aka. uniform norm aka. suppremum norm.
pub struct UniformNorm;

impl<N: ComplexField> Norm<N> for EuclideanNorm {
    #[inline]
    fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::RealField
        where R: Dim, C: Dim, S: Storage<N, R, C> {
        m.norm_squared().sqrt()
    }

    #[inline]
    fn metric_distance<R1, C1, S1, R2, C2, S2>(&self, m1: &Matrix<N, R1, C1, S1>, m2: &Matrix<N, R2, C2, S2>) -> N::RealField
        where R1: Dim, C1: Dim, S1: Storage<N, R1, C1>,
              R2: Dim, C2: Dim, S2: Storage<N, R2, C2>,
              ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> {
        m1.zip_fold(m2, N::RealField::zero(), |acc, a, b| {
            let diff = a - b;
            acc + diff.modulus_squared()
        }).sqrt()
    }
}

impl<N: ComplexField> Norm<N> for LpNorm {
    #[inline]
    fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::RealField
        where R: Dim, C: Dim, S: Storage<N, R, C> {
        m.fold(N::RealField::zero(), |a, b| {
            a + b.modulus().powi(self.0)
        }).powf(crate::convert(1.0 / (self.0 as f64)))
    }

    #[inline]
    fn metric_distance<R1, C1, S1, R2, C2, S2>(&self, m1: &Matrix<N, R1, C1, S1>, m2: &Matrix<N, R2, C2, S2>) -> N::RealField
        where R1: Dim, C1: Dim, S1: Storage<N, R1, C1>,
              R2: Dim, C2: Dim, S2: Storage<N, R2, C2>,
              ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> {
        m1.zip_fold(m2, N::RealField::zero(), |acc, a, b| {
            let diff = a - b;
            acc + diff.modulus().powi(self.0)
        }).powf(crate::convert(1.0 / (self.0 as f64)))
    }
}

impl<N: ComplexField> Norm<N> for UniformNorm {
    #[inline]
    fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::RealField
        where R: Dim, C: Dim, S: Storage<N, R, C> {
        // NOTE: we don't use `m.amax()` here because for the complex
        // numbers this will return the max norm1 instead of the modulus.
        m.fold(N::RealField::zero(), |acc, a| acc.max(a.modulus()))
    }

    #[inline]
    fn metric_distance<R1, C1, S1, R2, C2, S2>(&self, m1: &Matrix<N, R1, C1, S1>, m2: &Matrix<N, R2, C2, S2>) -> N::RealField
        where R1: Dim, C1: Dim, S1: Storage<N, R1, C1>,
              R2: Dim, C2: Dim, S2: Storage<N, R2, C2>,
              ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> {
        m1.zip_fold(m2, N::RealField::zero(), |acc, a, b| {
            let val = (a - b).modulus();
            if val > acc {
                val
            } else {
                acc
            }
        })
    }
}


impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
    /// The squared L2 norm of this vector.
    #[inline]
    pub fn norm_squared(&self) -> N::RealField {
        let mut res = N::RealField::zero();

        for i in 0..self.ncols() {
            let col = self.column(i);
            res += col.dotc(&col).real()
        }

        res
    }

    /// The L2 norm of this matrix.
    ///
    /// Use `.apply_norm` to apply a custom norm.
    #[inline]
    pub fn norm(&self) -> N::RealField {
        self.norm_squared().sqrt()
    }

    /// Compute the distance between `self` and `rhs` using the metric induced by the euclidean norm.
    ///
    /// Use `.apply_metric_distance` to apply a custom norm.
    #[inline]
    pub fn metric_distance<R2, C2, S2>(&self, rhs: &Matrix<N, R2, C2, S2>) -> N::RealField
        where R2: Dim, C2: Dim, S2: Storage<N, R2, C2>,
              ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2> {
        self.apply_metric_distance(rhs, &EuclideanNorm)
    }

    /// Uses the given `norm` to compute the norm of `self`.
    ///
    /// # Example
    ///
    /// ```
    /// # use nalgebra::{Vector3, UniformNorm, LpNorm, EuclideanNorm};
    ///
    /// let v = Vector3::new(1.0, 2.0, 3.0);
    /// assert_eq!(v.apply_norm(&UniformNorm), 3.0);
    /// assert_eq!(v.apply_norm(&LpNorm(1)), 6.0);
    /// assert_eq!(v.apply_norm(&EuclideanNorm), v.norm());
    /// ```
    #[inline]
    pub fn apply_norm(&self, norm: &impl Norm<N>) -> N::RealField {
        norm.norm(self)
    }

    /// Uses the metric induced by the given `norm` to compute the metric distance between `self` and `rhs`.
    ///
    /// # Example
    ///
    /// ```
    /// # use nalgebra::{Vector3, UniformNorm, LpNorm, EuclideanNorm};
    ///
    /// let v1 = Vector3::new(1.0, 2.0, 3.0);
    /// let v2 = Vector3::new(10.0, 20.0, 30.0);
    ///
    /// assert_eq!(v1.apply_metric_distance(&v2, &UniformNorm), 27.0);
    /// assert_eq!(v1.apply_metric_distance(&v2, &LpNorm(1)), 27.0 + 18.0 + 9.0);
    /// assert_eq!(v1.apply_metric_distance(&v2, &EuclideanNorm), (v1 - v2).norm());
    /// ```
    #[inline]
    pub fn apply_metric_distance<R2, C2, S2>(&self, rhs: &Matrix<N, R2, C2, S2>, norm: &impl Norm<N>) -> N::RealField
        where R2: Dim, C2: Dim, S2: Storage<N, R2, C2>,
              ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2> {
        norm.metric_distance(self, rhs)
    }

    /// A synonym for the norm of this matrix.
    ///
    /// Aka the length.
    ///
    /// This function is simply implemented as a call to `norm()`
    #[inline]
    pub fn magnitude(&self) -> N::RealField {
        self.norm()
    }

    /// A synonym for the squared norm of this matrix.
    ///
    /// Aka the squared length.
    ///
    /// This function is simply implemented as a call to `norm_squared()`
    #[inline]
    pub fn magnitude_squared(&self) -> N::RealField {
        self.norm_squared()
    }

    /// Returns a normalized version of this matrix.
    #[inline]
    pub fn normalize(&self) -> MatrixMN<N, R, C>
        where DefaultAllocator: Allocator<N, R, C> {
        self.unscale(self.norm())
    }

    /// Returns a normalized version of this matrix unless its norm as smaller or equal to `eps`.
    #[inline]
    pub fn try_normalize(&self, min_norm: N::RealField) -> Option<MatrixMN<N, R, C>>
        where DefaultAllocator: Allocator<N, R, C> {
        let n = self.norm();

        if n <= min_norm {
            None
        } else {
            Some(self.unscale(n))
        }
    }

    /// The Lp norm of this matrix.
    #[inline]
    pub fn lp_norm(&self, p: i32) -> N::RealField {
        self.apply_norm(&LpNorm(p))
    }
}


impl<N: ComplexField, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
    /// Normalizes this matrix in-place and returns its norm.
    #[inline]
    pub fn normalize_mut(&mut self) -> N::RealField {
        let n = self.norm();
        self.unscale_mut(n);

        n
    }

    /// Normalizes this matrix in-place or does nothing if its norm is smaller or equal to `eps`.
    ///
    /// If the normalization succeeded, returns the old normal of this matrix.
    #[inline]
    pub fn try_normalize_mut(&mut self, min_norm: N::RealField) -> Option<N::RealField> {
        let n = self.norm();

        if n <= min_norm {
            None
        } else {
            self.unscale_mut(n);
            Some(n)
        }
    }
}