1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
use approx::RelativeEq;
#[cfg(feature = "abomonation-serialize")]
use std::io::{Result as IOResult, Write};
use std::mem;
use std::ops::{Deref, Neg};

#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};

#[cfg(feature = "abomonation-serialize")]
use abomonation::Abomonation;

use alga::general::{SubsetOf, ComplexField};
use alga::linear::NormedSpace;

/// A wrapper that ensures the underlying algebraic entity has a unit norm.
///
/// Use `.as_ref()` or `.into_inner()` to obtain the underlying value by-reference or by-move.
#[repr(transparent)]
#[derive(Eq, PartialEq, Clone, Hash, Debug, Copy)]
pub struct Unit<T> {
    value: T,
}

#[cfg(feature = "serde-serialize")]
impl<T: Serialize> Serialize for Unit<T> {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where S: Serializer {
        self.value.serialize(serializer)
    }
}

#[cfg(feature = "serde-serialize")]
impl<'de, T: Deserialize<'de>> Deserialize<'de> for Unit<T> {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where D: Deserializer<'de> {
        T::deserialize(deserializer).map(|x| Unit { value: x })
    }
}

#[cfg(feature = "abomonation-serialize")]
impl<T: Abomonation> Abomonation for Unit<T> {
    unsafe fn entomb<W: Write>(&self, writer: &mut W) -> IOResult<()> {
        self.value.entomb(writer)
    }

    fn extent(&self) -> usize {
        self.value.extent()
    }

    unsafe fn exhume<'a, 'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> {
        self.value.exhume(bytes)
    }
}

impl<T: NormedSpace> Unit<T> {
    /// Normalize the given value and return it wrapped on a `Unit` structure.
    #[inline]
    pub fn new_normalize(value: T) -> Self {
        Self::new_and_get(value).0
    }

    /// Attempts to normalize the given value and return it wrapped on a `Unit` structure.
    ///
    /// Returns `None` if the norm was smaller or equal to `min_norm`.
    #[inline]
    pub fn try_new(value: T, min_norm: T::RealField) -> Option<Self> {
        Self::try_new_and_get(value, min_norm).map(|res| res.0)
    }

    /// Normalize the given value and return it wrapped on a `Unit` structure and its norm.
    #[inline]
    pub fn new_and_get(mut value: T) -> (Self, T::RealField) {
        let n = value.normalize_mut();

        (Unit { value: value }, n)
    }

    /// Normalize the given value and return it wrapped on a `Unit` structure and its norm.
    ///
    /// Returns `None` if the norm was smaller or equal to `min_norm`.
    #[inline]
    pub fn try_new_and_get(mut value: T, min_norm: T::RealField) -> Option<(Self, T::RealField)> {
        if let Some(n) = value.try_normalize_mut(min_norm) {
            Some((Unit { value: value }, n))
        } else {
            None
        }
    }

    /// Normalizes this value again. This is useful when repeated computations
    /// might cause a drift in the norm because of float inaccuracies.
    ///
    /// Returns the norm before re-normalization. See `.renormalize_fast` for a faster alternative
    /// that may be slightly less accurate if `self` drifted significantly from having a unit length.
    #[inline]
    pub fn renormalize(&mut self) -> T::RealField {
        self.value.normalize_mut()
    }

    /// Normalizes this value again using a first-order Taylor approximation.
    /// This is useful when repeated computations might cause a drift in the norm
    /// because of float inaccuracies.
    #[inline]
    pub fn renormalize_fast(&mut self) {
        let sq_norm = self.value.norm_squared();
        let _3: T::RealField = crate::convert(3.0);
        let _0_5: T::RealField = crate::convert(0.5);
        self.value *= T::ComplexField::from_real(_0_5 * (_3 - sq_norm));
    }
}

impl<T> Unit<T> {
    /// Wraps the given value, assuming it is already normalized.
    #[inline]
    pub fn new_unchecked(value: T) -> Self {
        Unit { value: value }
    }

    /// Wraps the given reference, assuming it is already normalized.
    #[inline]
    pub fn from_ref_unchecked<'a>(value: &'a T) -> &'a Self {
        unsafe { mem::transmute(value) }
    }

    /// Retrieves the underlying value.
    #[inline]
    pub fn into_inner(self) -> T {
        self.value
    }

    /// Retrieves the underlying value.
    /// Deprecated: use [Unit::into_inner] instead.
    #[deprecated(note="use `.into_inner()` instead")]
    #[inline]
    pub fn unwrap(self) -> T {
        self.value
    }

    /// Returns a mutable reference to the underlying value. This is `_unchecked` because modifying
    /// the underlying value in such a way that it no longer has unit length may lead to unexpected
    /// results.
    #[inline]
    pub fn as_mut_unchecked(&mut self) -> &mut T {
        &mut self.value
    }
}

impl<T> AsRef<T> for Unit<T> {
    #[inline]
    fn as_ref(&self) -> &T {
        &self.value
    }
}

/*
 *
 * Conversions.
 *
 */
impl<T: NormedSpace> SubsetOf<T> for Unit<T>
where T::Field: RelativeEq
{
    #[inline]
    fn to_superset(&self) -> T {
        self.clone().into_inner()
    }

    #[inline]
    fn is_in_subset(value: &T) -> bool {
        relative_eq!(value.norm_squared(), crate::one())
    }

    #[inline]
    unsafe fn from_superset_unchecked(value: &T) -> Self {
        Unit::new_normalize(value.clone()) // We still need to re-normalize because the condition is inexact.
    }
}

// impl<T: RelativeEq> RelativeEq for Unit<T> {
//     type Epsilon = T::Epsilon;
//
//     #[inline]
//     fn default_epsilon() -> Self::Epsilon {
//         T::default_epsilon()
//     }
//
//     #[inline]
//     fn default_max_relative() -> Self::Epsilon {
//         T::default_max_relative()
//     }
//
//     #[inline]
//     fn default_max_ulps() -> u32 {
//         T::default_max_ulps()
//     }
//
//     #[inline]
//     fn relative_eq(&self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon) -> bool {
//         self.value.relative_eq(&other.value, epsilon, max_relative)
//     }
//
//     #[inline]
//     fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
//         self.value.ulps_eq(&other.value, epsilon, max_ulps)
//     }
// }

// FIXME:re-enable this impl when specialization is possible.
// Currently, it is disabled so that we can have a nice output for the `UnitQuaternion` display.
/*
impl<T: fmt::Display> fmt::Display for Unit<T> {
    // XXX: will not always work correctly due to rounding errors.
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.value.fmt(f)
    }
}
*/

impl<T: Neg> Neg for Unit<T> {
    type Output = Unit<T::Output>;

    #[inline]
    fn neg(self) -> Self::Output {
        Self::Output::new_unchecked(-self.value)
    }
}

impl<T> Deref for Unit<T> {
    type Target = T;

    #[inline]
    fn deref(&self) -> &T {
        unsafe { mem::transmute(self) }
    }
}