1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
use alga::general::{RealField, SubsetOf, SupersetOf};
use alga::linear::Rotation;

use crate::base::allocator::Allocator;
use crate::base::dimension::{DimMin, DimName, DimNameAdd, DimNameSum, U1};
use crate::base::{DefaultAllocator, MatrixN};

use crate::geometry::{Isometry, Point, Similarity, SuperTCategoryOf, TAffine, Transform, Translation};

/*
 * This file provides the following conversions:
 * =============================================
 *
 * Similarity -> Similarity
 * Similarity -> Transform
 * Similarity -> Matrix (homogeneous)
 */

impl<N1, N2, D: DimName, R1, R2> SubsetOf<Similarity<N2, D, R2>> for Similarity<N1, D, R1>
where
    N1: RealField + SubsetOf<N2>,
    N2: RealField + SupersetOf<N1>,
    R1: Rotation<Point<N1, D>> + SubsetOf<R2>,
    R2: Rotation<Point<N2, D>>,
    DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
{
    #[inline]
    fn to_superset(&self) -> Similarity<N2, D, R2> {
        Similarity::from_isometry(self.isometry.to_superset(), self.scaling().to_superset())
    }

    #[inline]
    fn is_in_subset(sim: &Similarity<N2, D, R2>) -> bool {
        crate::is_convertible::<_, Isometry<N1, D, R1>>(&sim.isometry)
            && crate::is_convertible::<_, N1>(&sim.scaling())
    }

    #[inline]
    unsafe fn from_superset_unchecked(sim: &Similarity<N2, D, R2>) -> Self {
        Similarity::from_isometry(
            sim.isometry.to_subset_unchecked(),
            sim.scaling().to_subset_unchecked(),
        )
    }
}

impl<N1, N2, D, R, C> SubsetOf<Transform<N2, D, C>> for Similarity<N1, D, R>
where
    N1: RealField,
    N2: RealField + SupersetOf<N1>,
    C: SuperTCategoryOf<TAffine>,
    R: Rotation<Point<N1, D>>
        + SubsetOf<MatrixN<N1, DimNameSum<D, U1>>>
        + SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
    D: DimNameAdd<U1> + DimMin<D, Output = D>, // needed by .determinant()
    DefaultAllocator: Allocator<N1, D>
        + Allocator<N1, D, D>
        + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>>
        + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>
        + Allocator<(usize, usize), D>
        + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>
        + Allocator<N2, D, D>
        + Allocator<N2, D>,
{
    #[inline]
    fn to_superset(&self) -> Transform<N2, D, C> {
        Transform::from_matrix_unchecked(self.to_homogeneous().to_superset())
    }

    #[inline]
    fn is_in_subset(t: &Transform<N2, D, C>) -> bool {
        <Self as SubsetOf<_>>::is_in_subset(t.matrix())
    }

    #[inline]
    unsafe fn from_superset_unchecked(t: &Transform<N2, D, C>) -> Self {
        Self::from_superset_unchecked(t.matrix())
    }
}

impl<N1, N2, D, R> SubsetOf<MatrixN<N2, DimNameSum<D, U1>>> for Similarity<N1, D, R>
where
    N1: RealField,
    N2: RealField + SupersetOf<N1>,
    R: Rotation<Point<N1, D>>
        + SubsetOf<MatrixN<N1, DimNameSum<D, U1>>>
        + SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
    D: DimNameAdd<U1> + DimMin<D, Output = D>, // needed by .determinant()
    DefaultAllocator: Allocator<N1, D>
        + Allocator<N1, D, D>
        + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>>
        + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>
        + Allocator<(usize, usize), D>
        + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>
        + Allocator<N2, D, D>
        + Allocator<N2, D>,
{
    #[inline]
    fn to_superset(&self) -> MatrixN<N2, DimNameSum<D, U1>> {
        self.to_homogeneous().to_superset()
    }

    #[inline]
    fn is_in_subset(m: &MatrixN<N2, DimNameSum<D, U1>>) -> bool {
        let mut rot = m.fixed_slice::<D, D>(0, 0).clone_owned();
        if rot
            .fixed_columns_mut::<U1>(0)
            .try_normalize_mut(N2::zero())
            .is_some()
            && rot
                .fixed_columns_mut::<U1>(1)
                .try_normalize_mut(N2::zero())
                .is_some()
            && rot
                .fixed_columns_mut::<U1>(2)
                .try_normalize_mut(N2::zero())
                .is_some()
        {
            // FIXME: could we avoid explicit the computation of the determinant?
            // (its sign is needed to see if the scaling factor is negative).
            if rot.determinant() < N2::zero() {
                rot.fixed_columns_mut::<U1>(0).neg_mut();
                rot.fixed_columns_mut::<U1>(1).neg_mut();
                rot.fixed_columns_mut::<U1>(2).neg_mut();
            }

            let bottom = m.fixed_slice::<U1, D>(D::dim(), 0);
            // Scalar types agree.
            m.iter().all(|e| SupersetOf::<N1>::is_in_subset(e)) &&
            // The normalized block part is a rotation.
            // rot.is_special_orthogonal(N2::default_epsilon().sqrt()) &&
            // The bottom row is (0, 0, ..., 1)
            bottom.iter().all(|e| e.is_zero()) && m[(D::dim(), D::dim())] == N2::one()
        } else {
            false
        }
    }

    #[inline]
    unsafe fn from_superset_unchecked(m: &MatrixN<N2, DimNameSum<D, U1>>) -> Self {
        let mut mm = m.clone_owned();
        let na = mm.fixed_slice_mut::<D, U1>(0, 0).normalize_mut();
        let nb = mm.fixed_slice_mut::<D, U1>(0, 1).normalize_mut();
        let nc = mm.fixed_slice_mut::<D, U1>(0, 2).normalize_mut();

        let mut scale = (na + nb + nc) / crate::convert(3.0); // We take the mean, for robustness.

        // FIXME: could we avoid the explicit computation of the determinant?
        // (its sign is needed to see if the scaling factor is negative).
        if mm.fixed_slice::<D, D>(0, 0).determinant() < N2::zero() {
            mm.fixed_slice_mut::<D, U1>(0, 0).neg_mut();
            mm.fixed_slice_mut::<D, U1>(0, 1).neg_mut();
            mm.fixed_slice_mut::<D, U1>(0, 2).neg_mut();
            scale = -scale;
        }

        let t = m.fixed_slice::<D, U1>(0, D::dim()).into_owned();
        let t = Translation {
            vector: crate::convert_unchecked(t),
        };

        Self::from_parts(t, crate::convert_unchecked(mm), crate::convert_unchecked(scale))
    }
}

impl<N: RealField, D: DimName, R> From<Similarity<N, D, R>> for MatrixN<N, DimNameSum<D, U1>>
where
    D: DimNameAdd<U1>,
    R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>,
    DefaultAllocator: Allocator<N, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
{
    #[inline]
    fn from(sim: Similarity<N, D, R>) -> Self {
        sim.to_homogeneous()
    }
}