use alga::general::{
AbstractGroup, AbstractLoop, AbstractMagma, AbstractMonoid, AbstractQuasigroup,
AbstractSemigroup, Identity, TwoSidedInverse, Multiplicative, RealField,
};
use alga::linear::{ProjectiveTransformation, Transformation};
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimNameAdd, DimNameSum, U1};
use crate::base::{DefaultAllocator, VectorN};
use crate::geometry::{Point, SubTCategoryOf, TCategory, TProjective, Transform};
impl<N: RealField, D: DimNameAdd<U1>, C> Identity<Multiplicative> for Transform<N, D, C>
where
C: TCategory,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
{
#[inline]
fn identity() -> Self {
Self::identity()
}
}
impl<N: RealField, D: DimNameAdd<U1>, C> TwoSidedInverse<Multiplicative> for Transform<N, D, C>
where
C: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
{
#[inline]
fn two_sided_inverse(&self) -> Self {
self.clone().inverse()
}
#[inline]
fn two_sided_inverse_mut(&mut self) {
self.inverse_mut()
}
}
impl<N: RealField, D: DimNameAdd<U1>, C> AbstractMagma<Multiplicative> for Transform<N, D, C>
where
C: TCategory,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
{
#[inline]
fn operate(&self, rhs: &Self) -> Self {
self * rhs
}
}
macro_rules! impl_multiplicative_structures(
($($marker: ident<$operator: ident>),* $(,)*) => {$(
impl<N: RealField, D: DimNameAdd<U1>, C> $marker<$operator> for Transform<N, D, C>
where C: TCategory,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> { }
)*}
);
macro_rules! impl_inversible_multiplicative_structures(
($($marker: ident<$operator: ident>),* $(,)*) => {$(
impl<N: RealField, D: DimNameAdd<U1>, C> $marker<$operator> for Transform<N, D, C>
where C: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> { }
)*}
);
impl_multiplicative_structures!(
AbstractSemigroup<Multiplicative>,
AbstractMonoid<Multiplicative>,
);
impl_inversible_multiplicative_structures!(
AbstractQuasigroup<Multiplicative>,
AbstractLoop<Multiplicative>,
AbstractGroup<Multiplicative>
);
impl<N, D: DimNameAdd<U1>, C> Transformation<Point<N, D>> for Transform<N, D, C>
where
N: RealField,
C: TCategory,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>
+ Allocator<N, DimNameSum<D, U1>>
+ Allocator<N, D, D>
+ Allocator<N, D>,
{
#[inline]
fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
self.transform_point(pt)
}
#[inline]
fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
self.transform_vector(v)
}
}
impl<N, D: DimNameAdd<U1>, C> ProjectiveTransformation<Point<N, D>> for Transform<N, D, C>
where
N: RealField,
C: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>
+ Allocator<N, DimNameSum<D, U1>>
+ Allocator<N, D, D>
+ Allocator<N, D>,
{
#[inline]
fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
self.inverse_transform_point(pt)
}
#[inline]
fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
self.inverse_transform_vector(v)
}
}