1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Serialize};

use alga::general::ComplexField;

use crate::allocator::Allocator;
use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, SquareMatrix};
use crate::constraint::{SameNumberOfRows, ShapeConstraint};
use crate::dimension::{Dim, DimSub, Dynamic};
use crate::storage::{Storage, StorageMut};

/// The Cholesky decomposition of a symmetric-definite-positive matrix.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
    feature = "serde-serialize",
    serde(bound(
        serialize = "DefaultAllocator: Allocator<N, D>,
         MatrixN<N, D>: Serialize"
    ))
)]
#[cfg_attr(
    feature = "serde-serialize",
    serde(bound(
        deserialize = "DefaultAllocator: Allocator<N, D>,
         MatrixN<N, D>: Deserialize<'de>"
    ))
)]
#[derive(Clone, Debug)]
pub struct Cholesky<N: ComplexField, D: Dim>
where DefaultAllocator: Allocator<N, D, D>
{
    chol: MatrixN<N, D>,
}

impl<N: ComplexField, D: Dim> Copy for Cholesky<N, D>
where
    DefaultAllocator: Allocator<N, D, D>,
    MatrixN<N, D>: Copy,
{}

impl<N: ComplexField, D: DimSub<Dynamic>> Cholesky<N, D>
where DefaultAllocator: Allocator<N, D, D>
{
    /// Attempts to compute the Cholesky decomposition of `matrix`.
    ///
    /// Returns `None` if the input matrix is not definite-positive. The input matrix is assumed
    /// to be symmetric and only the lower-triangular part is read.
    pub fn new(mut matrix: MatrixN<N, D>) -> Option<Self> {
        assert!(matrix.is_square(), "The input matrix must be square.");

        let n = matrix.nrows();

        for j in 0..n {
            for k in 0..j {
                let factor = unsafe { -*matrix.get_unchecked((j, k)) };

                let (mut col_j, col_k) = matrix.columns_range_pair_mut(j, k);
                let mut col_j = col_j.rows_range_mut(j..);
                let col_k = col_k.rows_range(j..);

                col_j.axpy(factor.conjugate(), &col_k, N::one());
            }

            let diag = unsafe { *matrix.get_unchecked((j, j)) };
            if !diag.is_zero() {
                if let Some(denom) = diag.try_sqrt() {
                    unsafe {
                        *matrix.get_unchecked_mut((j, j)) = denom;
                    }

                    let mut col = matrix.slice_range_mut(j + 1.., j);
                    col /= denom;
                    continue;
                }
            }

            // The diagonal element is either zero or its square root could not
            // be taken (e.g. for negative real numbers).
            return None;
        }

        Some(Cholesky { chol: matrix })
    }

    /// Retrieves the lower-triangular factor of the Cholesky decomposition with its strictly
    /// upper-triangular part filled with zeros.
    pub fn unpack(mut self) -> MatrixN<N, D> {
        self.chol.fill_upper_triangle(N::zero(), 1);
        self.chol
    }

    /// Retrieves the lower-triangular factor of the Cholesky decomposition, without zeroing-out
    /// its strict upper-triangular part.
    ///
    /// The values of the strict upper-triangular part are garbage and should be ignored by further
    /// computations.
    pub fn unpack_dirty(self) -> MatrixN<N, D> {
        self.chol
    }

    /// Retrieves the lower-triangular factor of the Cholesky decomposition with its strictly
    /// uppen-triangular part filled with zeros.
    pub fn l(&self) -> MatrixN<N, D> {
        self.chol.lower_triangle()
    }

    /// Retrieves the lower-triangular factor of the Cholesky decomposition, without zeroing-out
    /// its strict upper-triangular part.
    ///
    /// This is an allocation-less version of `self.l()`. The values of the strict upper-triangular
    /// part are garbage and should be ignored by further computations.
    pub fn l_dirty(&self) -> &MatrixN<N, D> {
        &self.chol
    }

    /// Solves the system `self * x = b` where `self` is the decomposed matrix and `x` the unknown.
    ///
    /// The result is stored on `b`.
    pub fn solve_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<N, R2, C2, S2>)
    where
        S2: StorageMut<N, R2, C2>,
        ShapeConstraint: SameNumberOfRows<R2, D>,
    {
        let _ = self.chol.solve_lower_triangular_mut(b);
        let _ = self.chol.ad_solve_lower_triangular_mut(b);
    }

    /// Returns the solution of the system `self * x = b` where `self` is the decomposed matrix and
    /// `x` the unknown.
    pub fn solve<R2: Dim, C2: Dim, S2>(&self, b: &Matrix<N, R2, C2, S2>) -> MatrixMN<N, R2, C2>
    where
        S2: StorageMut<N, R2, C2>,
        DefaultAllocator: Allocator<N, R2, C2>,
        ShapeConstraint: SameNumberOfRows<R2, D>,
    {
        let mut res = b.clone_owned();
        self.solve_mut(&mut res);
        res
    }

    /// Computes the inverse of the decomposed matrix.
    pub fn inverse(&self) -> MatrixN<N, D> {
        let shape = self.chol.data.shape();
        let mut res = MatrixN::identity_generic(shape.0, shape.1);

        self.solve_mut(&mut res);
        res
    }
}

impl<N: ComplexField, D: DimSub<Dynamic>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
where DefaultAllocator: Allocator<N, D, D>
{
    /// Attempts to compute the Cholesky decomposition of this matrix.
    ///
    /// Returns `None` if the input matrix is not definite-positive. The input matrix is assumed
    /// to be symmetric and only the lower-triangular part is read.
    pub fn cholesky(self) -> Option<Cholesky<N, D>> {
        Cholesky::new(self.into_owned())
    }
}