1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
// Copyright 2017, 2018 Parity Technologies // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //! # Parity SCALE Codec //! //! Rust implementation of the SCALE (Simple Concatenated Aggregate Little-Endian) data format //! for types used in the Parity Substrate framework. //! //! SCALE is a light-weight format which allows encoding (and decoding) which makes it highly //! suitable for resource-constrained execution environments like blockchain runtimes and low-power, //! low-memory devices. //! //! It is important to note that the encoding context (knowledge of how the types and data structures look) //! needs to be known separately at both encoding and decoding ends. //! The encoded data does not include this contextual information. //! //! To get a better understanding of how the encoding is done for different types, //! take a look at the //! [low-level data formats overview page at the Substrate docs site](https://substrate.dev/docs/en/overview/low-level-data-format). //! //! ## Implementation //! //! The codec is implemented using the following traits: //! //! ### Encode //! //! The `Encode` trait is used for encoding of data into the SCALE format. The `Encode` trait contains the following functions: //! * `size_hint(&self) -> usize`: Gets the capacity (in bytes) required for the encoded data. //! This is to avoid double-allocation of memory needed for the encoding. //! It can be an estimate and does not need to be an exact number. //! If the size is not known, even no good maximum, then we can skip this function from the trait implementation. //! This is required to be a cheap operation, so should not involve iterations etc. //! * `encode_to<T: Output>(&self, dest: &mut T)`: Encodes the value and appends it to a destination buffer. //! * `encode(&self) -> Vec<u8>`: Encodes the type data and returns a slice. //! * `using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R`: Encodes the type data and executes a closure on the encoded value. //! Returns the result from the executed closure. //! //! **Note:** Implementations should override `using_encoded` for value types and `encode_to` for allocating types. //! `size_hint` should be implemented for all types, wherever possible. Wrapper types should override all methods. //! //! ### Decode //! //! The `Decode` trait is used for deserialization/decoding of encoded data into the respective types. //! //! * `fn decode<I: Input>(value: &mut I) -> Result<Self, Error>`: Tries to decode the value from SCALE format to the type it is called on. //! Returns an `Err` if the decoding fails. //! //! ### CompactAs //! //! The `CompactAs` trait is used for wrapping custom types/structs as compact types, which makes them even more space/memory efficient. //! The compact encoding is described [here](https://substrate.dev/docs/en/overview/low-level-data-format#compact-general-integers). //! //! * `encode_as(&self) -> &Self::As`: Encodes the type (self) as a compact type. //! The type `As` is defined in the same trait and its implementation should be compact encode-able. //! * `decode_from(_: Self::As) -> Self`: Decodes the type (self) from a compact encode-able type. //! //! ### HasCompact //! //! The `HasCompact` trait, if implemented, tells that the corresponding type is a compact encode-able type. //! //! ### EncodeLike //! //! The `EncodeLike` trait needs to be implemented for each type manually. When using derive, it is //! done automatically for you. Basically the trait gives you the opportunity to accept multiple types //! to a function that all encode to the same representation. //! //! ## Usage Examples //! //! Following are some examples to demonstrate usage of the codec. //! //! ### Simple types //! //! ``` //! # // Import macros if derive feature is not used. //! # #[cfg(not(feature="derive"))] //! # use parity_scale_codec_derive::{Encode, Decode}; //! //! use parity_scale_codec::{Encode, Decode}; //! //! #[derive(Debug, PartialEq, Encode, Decode)] //! enum EnumType { //! #[codec(index = "15")] //! A, //! B(u32, u64), //! C { //! a: u32, //! b: u64, //! }, //! } //! //! let a = EnumType::A; //! let b = EnumType::B(1, 2); //! let c = EnumType::C { a: 1, b: 2 }; //! //! a.using_encoded(|ref slice| { //! assert_eq!(slice, &b"\x0f"); //! }); //! //! b.using_encoded(|ref slice| { //! assert_eq!(slice, &b"\x01\x01\0\0\0\x02\0\0\0\0\0\0\0"); //! }); //! //! c.using_encoded(|ref slice| { //! assert_eq!(slice, &b"\x02\x01\0\0\0\x02\0\0\0\0\0\0\0"); //! }); //! //! let mut da: &[u8] = b"\x0f"; //! assert_eq!(EnumType::decode(&mut da).ok(), Some(a)); //! //! let mut db: &[u8] = b"\x01\x01\0\0\0\x02\0\0\0\0\0\0\0"; //! assert_eq!(EnumType::decode(&mut db).ok(), Some(b)); //! //! let mut dc: &[u8] = b"\x02\x01\0\0\0\x02\0\0\0\0\0\0\0"; //! assert_eq!(EnumType::decode(&mut dc).ok(), Some(c)); //! //! let mut dz: &[u8] = &[0]; //! assert_eq!(EnumType::decode(&mut dz).ok(), None); //! //! # fn main() { } //! ``` //! //! ### Compact type with HasCompact //! //! ``` //! # // Import macros if derive feature is not used. //! # #[cfg(not(feature="derive"))] //! # use parity_scale_codec_derive::{Encode, Decode}; //! //! use parity_scale_codec::{Encode, Decode, Compact, HasCompact}; //! //! #[derive(Debug, PartialEq, Encode, Decode)] //! struct Test1CompactHasCompact<T: HasCompact> { //! #[codec(compact)] //! bar: T, //! } //! //! #[derive(Debug, PartialEq, Encode, Decode)] //! struct Test1HasCompact<T: HasCompact> { //! #[codec(encoded_as = "<T as HasCompact>::Type")] //! bar: T, //! } //! //! let test_val: (u64, usize) = (0u64, 1usize); //! //! let encoded = Test1HasCompact { bar: test_val.0 }.encode(); //! assert_eq!(encoded.len(), test_val.1); //! assert_eq!(<Test1CompactHasCompact<u64>>::decode(&mut &encoded[..]).unwrap().bar, test_val.0); //! //! # fn main() { } //! ``` //! ### Type with CompactAs //! //! ```rust //! # // Import macros if derive feature is not used. //! # #[cfg(not(feature="derive"))] //! # use parity_scale_codec_derive::{Encode, Decode}; //! //! use serde_derive::{Serialize, Deserialize}; //! use parity_scale_codec::{Encode, Decode, Compact, HasCompact, CompactAs}; //! //! #[cfg_attr(feature = "std", derive(Serialize, Deserialize, Debug))] //! #[derive(PartialEq, Eq, Clone)] //! struct StructHasCompact(u32); //! //! impl CompactAs for StructHasCompact { //! type As = u32; //! //! fn encode_as(&self) -> &Self::As { //! &12 //! } //! //! fn decode_from(_: Self::As) -> Self { //! StructHasCompact(12) //! } //! } //! //! impl From<Compact<StructHasCompact>> for StructHasCompact { //! fn from(_: Compact<StructHasCompact>) -> Self { //! StructHasCompact(12) //! } //! } //! //! #[derive(Debug, PartialEq, Encode, Decode)] //! enum TestGenericHasCompact<T> { //! A { //! #[codec(compact)] a: T //! }, //! } //! //! let a = TestGenericHasCompact::A::<StructHasCompact> { //! a: StructHasCompact(12325678), //! }; //! //! let encoded = a.encode(); //! assert_eq!(encoded.len(), 2); //! //! # fn main() { } //! ``` //! //! ## Derive attributes //! //! The derive implementation supports the following attributes: //! - `codec(dumb_trait_bound)`: This attribute needs to be placed above the type that one of the trait //! should be implemented for. It will make the algorithm that determines the to-add trait bounds //! fall back to just use the type parameters of the type. This can be useful for situation where //! the algorithm includes private types in the public interface. By using this attribute, you should //! not get this error/warning again. //! - `codec(skip)`: Needs to be placed above a field and makes the field to be skipped while encoding/decoding. //! - `codec(compact)`: Needs to be placed above a field and makes the field use compact encoding. //! (The type needs to support compact encoding.) //! - `codec(encoded_as(OtherType))`: Needs to be placed above a field and makes the field being encoded //! by using `OtherType`. //! - `codec(index("0"))`: Needs to be placed above an enum variant to make the variant use the given //! index when encoded. By default the index is determined by counting from `0` beginning wth the //! first variant. //! #![warn(missing_docs)] #![cfg_attr(not(feature = "std"), no_std)] #[cfg(not(feature = "std"))] #[macro_use] #[doc(hidden)] pub extern crate alloc; #[cfg(feature = "parity-scale-codec-derive")] #[allow(unused_imports)] #[macro_use] extern crate parity_scale_codec_derive; #[cfg(all(feature = "std", test))] #[macro_use] extern crate serde_derive; #[cfg(feature = "parity-scale-codec-derive")] pub use parity_scale_codec_derive::*; #[cfg(feature = "std")] #[doc(hidden)] pub mod alloc { pub use std::boxed; pub use std::vec; pub use std::string; pub use std::borrow; pub use std::collections; pub use std::sync; pub use std::rc; } mod codec; mod compact; mod joiner; mod keyedvec; #[cfg(feature = "bit-vec")] mod bit_vec; #[cfg(feature = "generic-array")] mod generic_array; mod decode_all; mod depth_limit; mod encode_append; mod encode_like; pub use self::codec::{ Input, Output, Error, Decode, Encode, Codec, EncodeAsRef, WrapperTypeEncode, OptionBool, DecodeLength, FullCodec, FullEncode, }; #[cfg(feature = "std")] pub use self::codec::IoReader; pub use self::compact::{Compact, HasCompact, CompactAs, CompactLen}; pub use self::joiner::Joiner; pub use self::keyedvec::KeyedVec; pub use self::decode_all::DecodeAll; pub use self::depth_limit::DecodeLimit; pub use self::encode_append::EncodeAppend; pub use self::encode_like::{EncodeLike, Ref};