1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
/*! Defines an abstract syntax for regular expressions. */ use std::cmp::Ordering; use std::error; use std::fmt; pub use ast::visitor::{visit, Visitor}; pub mod parse; pub mod print; mod visitor; /// An error that occurred while parsing a regular expression into an abstract /// syntax tree. /// /// Note that note all ASTs represents a valid regular expression. For example, /// an AST is constructed without error for `\p{Quux}`, but `Quux` is not a /// valid Unicode property name. That particular error is reported when /// translating an AST to the high-level intermediate representation (`HIR`). #[derive(Clone, Debug, Eq, PartialEq)] pub struct Error { /// The kind of error. kind: ErrorKind, /// The original pattern that the parser generated the error from. Every /// span in an error is a valid range into this string. pattern: String, /// The span of this error. span: Span, } impl Error { /// Return the type of this error. pub fn kind(&self) -> &ErrorKind { &self.kind } /// The original pattern string in which this error occurred. /// /// Every span reported by this error is reported in terms of this string. pub fn pattern(&self) -> &str { &self.pattern } /// Return the span at which this error occurred. pub fn span(&self) -> &Span { &self.span } /// Return an auxiliary span. This span exists only for some errors that /// benefit from being able to point to two locations in the original /// regular expression. For example, "duplicate" errors will have the /// main error position set to the duplicate occurrence while its /// auxiliary span will be set to the initial occurrence. pub fn auxiliary_span(&self) -> Option<&Span> { use self::ErrorKind::*; match self.kind { FlagDuplicate { ref original } => Some(original), FlagRepeatedNegation { ref original, .. } => Some(original), GroupNameDuplicate { ref original, .. } => Some(original), _ => None, } } } /// The type of an error that occurred while building an AST. #[derive(Clone, Debug, Eq, PartialEq)] pub enum ErrorKind { /// The capturing group limit was exceeded. /// /// Note that this represents a limit on the total number of capturing /// groups in a regex and not necessarily the number of nested capturing /// groups. That is, the nest limit can be low and it is still possible for /// this error to occur. CaptureLimitExceeded, /// An invalid escape sequence was found in a character class set. ClassEscapeInvalid, /// An invalid character class range was found. An invalid range is any /// range where the start is greater than the end. ClassRangeInvalid, /// An invalid range boundary was found in a character class. Range /// boundaries must be a single literal codepoint, but this error indicates /// that something else was found, such as a nested class. ClassRangeLiteral, /// An opening `[` was found with no corresponding closing `]`. ClassUnclosed, /// Note that this error variant is no longer used. Namely, a decimal /// number can only appear as a repetition quantifier. When the number /// in a repetition quantifier is empty, then it gets its own specialized /// error, `RepetitionCountDecimalEmpty`. DecimalEmpty, /// An invalid decimal number was given where one was expected. DecimalInvalid, /// A bracketed hex literal was empty. EscapeHexEmpty, /// A bracketed hex literal did not correspond to a Unicode scalar value. EscapeHexInvalid, /// An invalid hexadecimal digit was found. EscapeHexInvalidDigit, /// EOF was found before an escape sequence was completed. EscapeUnexpectedEof, /// An unrecognized escape sequence. EscapeUnrecognized, /// A dangling negation was used when setting flags, e.g., `i-`. FlagDanglingNegation, /// A flag was used twice, e.g., `i-i`. FlagDuplicate { /// The position of the original flag. The error position /// points to the duplicate flag. original: Span, }, /// The negation operator was used twice, e.g., `-i-s`. FlagRepeatedNegation { /// The position of the original negation operator. The error position /// points to the duplicate negation operator. original: Span, }, /// Expected a flag but got EOF, e.g., `(?`. FlagUnexpectedEof, /// Unrecognized flag, e.g., `a`. FlagUnrecognized, /// A duplicate capture name was found. GroupNameDuplicate { /// The position of the initial occurrence of the capture name. The /// error position itself points to the duplicate occurrence. original: Span, }, /// A capture group name is empty, e.g., `(?P<>abc)`. GroupNameEmpty, /// An invalid character was seen for a capture group name. This includes /// errors where the first character is a digit (even though subsequent /// characters are allowed to be digits). GroupNameInvalid, /// A closing `>` could not be found for a capture group name. GroupNameUnexpectedEof, /// An unclosed group, e.g., `(ab`. /// /// The span of this error corresponds to the unclosed parenthesis. GroupUnclosed, /// An unopened group, e.g., `ab)`. GroupUnopened, /// The nest limit was exceeded. The limit stored here is the limit /// configured in the parser. NestLimitExceeded(u32), /// The range provided in a counted repetition operator is invalid. The /// range is invalid if the start is greater than the end. RepetitionCountInvalid, /// An opening `{` was not followed by a valid decimal value. /// For example, `x{}` or `x{]}` would fail. RepetitionCountDecimalEmpty, /// An opening `{` was found with no corresponding closing `}`. RepetitionCountUnclosed, /// A repetition operator was applied to a missing sub-expression. This /// occurs, for example, in the regex consisting of just a `*` or even /// `(?i)*`. It is, however, possible to create a repetition operating on /// an empty sub-expression. For example, `()*` is still considered valid. RepetitionMissing, /// The Unicode class is not valid. This typically occurs when a `\p` is /// followed by something other than a `{`. UnicodeClassInvalid, /// When octal support is disabled, this error is produced when an octal /// escape is used. The octal escape is assumed to be an invocation of /// a backreference, which is the common case. UnsupportedBackreference, /// When syntax similar to PCRE's look-around is used, this error is /// returned. Some example syntaxes that are rejected include, but are /// not necessarily limited to, `(?=re)`, `(?!re)`, `(?<=re)` and /// `(?<!re)`. Note that all of these syntaxes are otherwise invalid; this /// error is used to improve the user experience. UnsupportedLookAround, /// Hints that destructuring should not be exhaustive. /// /// This enum may grow additional variants, so this makes sure clients /// don't count on exhaustive matching. (Otherwise, adding a new variant /// could break existing code.) #[doc(hidden)] __Nonexhaustive, } impl error::Error for Error { // TODO: Remove this method entirely on the next breaking semver release. #[allow(deprecated)] fn description(&self) -> &str { use self::ErrorKind::*; match self.kind { CaptureLimitExceeded => "capture group limit exceeded", ClassEscapeInvalid => "invalid escape sequence in character class", ClassRangeInvalid => "invalid character class range", ClassRangeLiteral => "invalid range boundary, must be a literal", ClassUnclosed => "unclosed character class", DecimalEmpty => "empty decimal literal", DecimalInvalid => "invalid decimal literal", EscapeHexEmpty => "empty hexadecimal literal", EscapeHexInvalid => "invalid hexadecimal literal", EscapeHexInvalidDigit => "invalid hexadecimal digit", EscapeUnexpectedEof => "unexpected eof (escape sequence)", EscapeUnrecognized => "unrecognized escape sequence", FlagDanglingNegation => "dangling flag negation operator", FlagDuplicate { .. } => "duplicate flag", FlagRepeatedNegation { .. } => "repeated negation", FlagUnexpectedEof => "unexpected eof (flag)", FlagUnrecognized => "unrecognized flag", GroupNameDuplicate { .. } => "duplicate capture group name", GroupNameEmpty => "empty capture group name", GroupNameInvalid => "invalid capture group name", GroupNameUnexpectedEof => "unclosed capture group name", GroupUnclosed => "unclosed group", GroupUnopened => "unopened group", NestLimitExceeded(_) => "nest limit exceeded", RepetitionCountInvalid => "invalid repetition count range", RepetitionCountUnclosed => "unclosed counted repetition", RepetitionMissing => "repetition operator missing expression", UnicodeClassInvalid => "invalid Unicode character class", UnsupportedBackreference => "backreferences are not supported", UnsupportedLookAround => "look-around is not supported", _ => unreachable!(), } } } impl fmt::Display for Error { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { ::error::Formatter::from(self).fmt(f) } } impl fmt::Display for ErrorKind { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { use self::ErrorKind::*; match *self { CaptureLimitExceeded => write!( f, "exceeded the maximum number of \ capturing groups ({})", ::std::u32::MAX ), ClassEscapeInvalid => { write!(f, "invalid escape sequence found in character class") } ClassRangeInvalid => write!( f, "invalid character class range, \ the start must be <= the end" ), ClassRangeLiteral => { write!(f, "invalid range boundary, must be a literal") } ClassUnclosed => write!(f, "unclosed character class"), DecimalEmpty => write!(f, "decimal literal empty"), DecimalInvalid => write!(f, "decimal literal invalid"), EscapeHexEmpty => write!(f, "hexadecimal literal empty"), EscapeHexInvalid => { write!(f, "hexadecimal literal is not a Unicode scalar value") } EscapeHexInvalidDigit => write!(f, "invalid hexadecimal digit"), EscapeUnexpectedEof => write!( f, "incomplete escape sequence, \ reached end of pattern prematurely" ), EscapeUnrecognized => write!(f, "unrecognized escape sequence"), FlagDanglingNegation => { write!(f, "dangling flag negation operator") } FlagDuplicate { .. } => write!(f, "duplicate flag"), FlagRepeatedNegation { .. } => { write!(f, "flag negation operator repeated") } FlagUnexpectedEof => { write!(f, "expected flag but got end of regex") } FlagUnrecognized => write!(f, "unrecognized flag"), GroupNameDuplicate { .. } => { write!(f, "duplicate capture group name") } GroupNameEmpty => write!(f, "empty capture group name"), GroupNameInvalid => write!(f, "invalid capture group character"), GroupNameUnexpectedEof => write!(f, "unclosed capture group name"), GroupUnclosed => write!(f, "unclosed group"), GroupUnopened => write!(f, "unopened group"), NestLimitExceeded(limit) => write!( f, "exceed the maximum number of \ nested parentheses/brackets ({})", limit ), RepetitionCountInvalid => write!( f, "invalid repetition count range, \ the start must be <= the end" ), RepetitionCountDecimalEmpty => { write!(f, "repetition quantifier expects a valid decimal") } RepetitionCountUnclosed => { write!(f, "unclosed counted repetition") } RepetitionMissing => { write!(f, "repetition operator missing expression") } UnicodeClassInvalid => { write!(f, "invalid Unicode character class") } UnsupportedBackreference => { write!(f, "backreferences are not supported") } UnsupportedLookAround => write!( f, "look-around, including look-ahead and look-behind, \ is not supported" ), _ => unreachable!(), } } } /// Span represents the position information of a single AST item. /// /// All span positions are absolute byte offsets that can be used on the /// original regular expression that was parsed. #[derive(Clone, Copy, Eq, PartialEq)] pub struct Span { /// The start byte offset. pub start: Position, /// The end byte offset. pub end: Position, } impl fmt::Debug for Span { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "Span({:?}, {:?})", self.start, self.end) } } impl Ord for Span { fn cmp(&self, other: &Span) -> Ordering { (&self.start, &self.end).cmp(&(&other.start, &other.end)) } } impl PartialOrd for Span { fn partial_cmp(&self, other: &Span) -> Option<Ordering> { Some(self.cmp(other)) } } /// A single position in a regular expression. /// /// A position encodes one half of a span, and include the byte offset, line /// number and column number. #[derive(Clone, Copy, Eq, PartialEq)] pub struct Position { /// The absolute offset of this position, starting at `0` from the /// beginning of the regular expression pattern string. pub offset: usize, /// The line number, starting at `1`. pub line: usize, /// The approximate column number, starting at `1`. pub column: usize, } impl fmt::Debug for Position { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!( f, "Position(o: {:?}, l: {:?}, c: {:?})", self.offset, self.line, self.column ) } } impl Ord for Position { fn cmp(&self, other: &Position) -> Ordering { self.offset.cmp(&other.offset) } } impl PartialOrd for Position { fn partial_cmp(&self, other: &Position) -> Option<Ordering> { Some(self.cmp(other)) } } impl Span { /// Create a new span with the given positions. pub fn new(start: Position, end: Position) -> Span { Span { start: start, end: end } } /// Create a new span using the given position as the start and end. pub fn splat(pos: Position) -> Span { Span::new(pos, pos) } /// Create a new span by replacing the starting the position with the one /// given. pub fn with_start(self, pos: Position) -> Span { Span { start: pos, ..self } } /// Create a new span by replacing the ending the position with the one /// given. pub fn with_end(self, pos: Position) -> Span { Span { end: pos, ..self } } /// Returns true if and only if this span occurs on a single line. pub fn is_one_line(&self) -> bool { self.start.line == self.end.line } /// Returns true if and only if this span is empty. That is, it points to /// a single position in the concrete syntax of a regular expression. pub fn is_empty(&self) -> bool { self.start.offset == self.end.offset } } impl Position { /// Create a new position with the given information. /// /// `offset` is the absolute offset of the position, starting at `0` from /// the beginning of the regular expression pattern string. /// /// `line` is the line number, starting at `1`. /// /// `column` is the approximate column number, starting at `1`. pub fn new(offset: usize, line: usize, column: usize) -> Position { Position { offset: offset, line: line, column: column } } } /// An abstract syntax tree for a singular expression along with comments /// found. /// /// Comments are not stored in the tree itself to avoid complexity. Each /// comment contains a span of precisely where it occurred in the original /// regular expression. #[derive(Clone, Debug, Eq, PartialEq)] pub struct WithComments { /// The actual ast. pub ast: Ast, /// All comments found in the original regular expression. pub comments: Vec<Comment>, } /// A comment from a regular expression with an associated span. /// /// A regular expression can only contain comments when the `x` flag is /// enabled. #[derive(Clone, Debug, Eq, PartialEq)] pub struct Comment { /// The span of this comment, including the beginning `#` and ending `\n`. pub span: Span, /// The comment text, starting with the first character following the `#` /// and ending with the last character preceding the `\n`. pub comment: String, } /// An abstract syntax tree for a single regular expression. /// /// An `Ast`'s `fmt::Display` implementation uses constant stack space and heap /// space proportional to the size of the `Ast`. /// /// This type defines its own destructor that uses constant stack space and /// heap space proportional to the size of the `Ast`. #[derive(Clone, Debug, Eq, PartialEq)] pub enum Ast { /// An empty regex that matches everything. Empty(Span), /// A set of flags, e.g., `(?is)`. Flags(SetFlags), /// A single character literal, which includes escape sequences. Literal(Literal), /// The "any character" class. Dot(Span), /// A single zero-width assertion. Assertion(Assertion), /// A single character class. This includes all forms of character classes /// except for `.`. e.g., `\d`, `\pN`, `[a-z]` and `[[:alpha:]]`. Class(Class), /// A repetition operator applied to an arbitrary regular expression. Repetition(Repetition), /// A grouped regular expression. Group(Group), /// An alternation of regular expressions. Alternation(Alternation), /// A concatenation of regular expressions. Concat(Concat), } impl Ast { /// Return the span of this abstract syntax tree. pub fn span(&self) -> &Span { match *self { Ast::Empty(ref span) => span, Ast::Flags(ref x) => &x.span, Ast::Literal(ref x) => &x.span, Ast::Dot(ref span) => span, Ast::Assertion(ref x) => &x.span, Ast::Class(ref x) => x.span(), Ast::Repetition(ref x) => &x.span, Ast::Group(ref x) => &x.span, Ast::Alternation(ref x) => &x.span, Ast::Concat(ref x) => &x.span, } } /// Return true if and only if this Ast is empty. pub fn is_empty(&self) -> bool { match *self { Ast::Empty(_) => true, _ => false, } } /// Returns true if and only if this AST has any (including possibly empty) /// subexpressions. fn has_subexprs(&self) -> bool { match *self { Ast::Empty(_) | Ast::Flags(_) | Ast::Literal(_) | Ast::Dot(_) | Ast::Assertion(_) => false, Ast::Class(_) | Ast::Repetition(_) | Ast::Group(_) | Ast::Alternation(_) | Ast::Concat(_) => true, } } } /// Print a display representation of this Ast. /// /// This does not preserve any of the original whitespace formatting that may /// have originally been present in the concrete syntax from which this Ast /// was generated. /// /// This implementation uses constant stack space and heap space proportional /// to the size of the `Ast`. impl fmt::Display for Ast { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { use ast::print::Printer; Printer::new().print(self, f) } } /// An alternation of regular expressions. #[derive(Clone, Debug, Eq, PartialEq)] pub struct Alternation { /// The span of this alternation. pub span: Span, /// The alternate regular expressions. pub asts: Vec<Ast>, } impl Alternation { /// Return this alternation as an AST. /// /// If this alternation contains zero ASTs, then Ast::Empty is /// returned. If this alternation contains exactly 1 AST, then the /// corresponding AST is returned. Otherwise, Ast::Alternation is returned. pub fn into_ast(mut self) -> Ast { match self.asts.len() { 0 => Ast::Empty(self.span), 1 => self.asts.pop().unwrap(), _ => Ast::Alternation(self), } } } /// A concatenation of regular expressions. #[derive(Clone, Debug, Eq, PartialEq)] pub struct Concat { /// The span of this concatenation. pub span: Span, /// The concatenation regular expressions. pub asts: Vec<Ast>, } impl Concat { /// Return this concatenation as an AST. /// /// If this concatenation contains zero ASTs, then Ast::Empty is /// returned. If this concatenation contains exactly 1 AST, then the /// corresponding AST is returned. Otherwise, Ast::Concat is returned. pub fn into_ast(mut self) -> Ast { match self.asts.len() { 0 => Ast::Empty(self.span), 1 => self.asts.pop().unwrap(), _ => Ast::Concat(self), } } } /// A single literal expression. /// /// A literal corresponds to a single Unicode scalar value. Literals may be /// represented in their literal form, e.g., `a` or in their escaped form, /// e.g., `\x61`. #[derive(Clone, Debug, Eq, PartialEq)] pub struct Literal { /// The span of this literal. pub span: Span, /// The kind of this literal. pub kind: LiteralKind, /// The Unicode scalar value corresponding to this literal. pub c: char, } impl Literal { /// If this literal was written as a `\x` hex escape, then this returns /// the corresponding byte value. Otherwise, this returns `None`. pub fn byte(&self) -> Option<u8> { let short_hex = LiteralKind::HexFixed(HexLiteralKind::X); if self.c as u32 <= 255 && self.kind == short_hex { Some(self.c as u8) } else { None } } } /// The kind of a single literal expression. #[derive(Clone, Debug, Eq, PartialEq)] pub enum LiteralKind { /// The literal is written verbatim, e.g., `a` or `☃`. Verbatim, /// The literal is written as an escape because it is punctuation, e.g., /// `\*` or `\[`. Punctuation, /// The literal is written as an octal escape, e.g., `\141`. Octal, /// The literal is written as a hex code with a fixed number of digits /// depending on the type of the escape, e.g., `\x61` or or `\u0061` or /// `\U00000061`. HexFixed(HexLiteralKind), /// The literal is written as a hex code with a bracketed number of /// digits. The only restriction is that the bracketed hex code must refer /// to a valid Unicode scalar value. HexBrace(HexLiteralKind), /// The literal is written as a specially recognized escape, e.g., `\f` /// or `\n`. Special(SpecialLiteralKind), } /// The type of a special literal. /// /// A special literal is a special escape sequence recognized by the regex /// parser, e.g., `\f` or `\n`. #[derive(Clone, Debug, Eq, PartialEq)] pub enum SpecialLiteralKind { /// Bell, spelled `\a` (`\x07`). Bell, /// Form feed, spelled `\f` (`\x0C`). FormFeed, /// Tab, spelled `\t` (`\x09`). Tab, /// Line feed, spelled `\n` (`\x0A`). LineFeed, /// Carriage return, spelled `\r` (`\x0D`). CarriageReturn, /// Vertical tab, spelled `\v` (`\x0B`). VerticalTab, /// Space, spelled `\ ` (`\x20`). Note that this can only appear when /// parsing in verbose mode. Space, } /// The type of a Unicode hex literal. /// /// Note that all variants behave the same when used with brackets. They only /// differ when used without brackets in the number of hex digits that must /// follow. #[derive(Clone, Debug, Eq, PartialEq)] pub enum HexLiteralKind { /// A `\x` prefix. When used without brackets, this form is limited to /// two digits. X, /// A `\u` prefix. When used without brackets, this form is limited to /// four digits. UnicodeShort, /// A `\U` prefix. When used without brackets, this form is limited to /// eight digits. UnicodeLong, } impl HexLiteralKind { /// The number of digits that must be used with this literal form when /// used without brackets. When used with brackets, there is no /// restriction on the number of digits. pub fn digits(&self) -> u32 { match *self { HexLiteralKind::X => 2, HexLiteralKind::UnicodeShort => 4, HexLiteralKind::UnicodeLong => 8, } } } /// A single character class expression. #[derive(Clone, Debug, Eq, PartialEq)] pub enum Class { /// A Unicode character class, e.g., `\pL` or `\p{Greek}`. Unicode(ClassUnicode), /// A perl character class, e.g., `\d` or `\W`. Perl(ClassPerl), /// A bracketed character class set, which may contain zero or more /// character ranges and/or zero or more nested classes. e.g., /// `[a-zA-Z\pL]`. Bracketed(ClassBracketed), } impl Class { /// Return the span of this character class. pub fn span(&self) -> &Span { match *self { Class::Perl(ref x) => &x.span, Class::Unicode(ref x) => &x.span, Class::Bracketed(ref x) => &x.span, } } } /// A Perl character class. #[derive(Clone, Debug, Eq, PartialEq)] pub struct ClassPerl { /// The span of this class. pub span: Span, /// The kind of Perl class. pub kind: ClassPerlKind, /// Whether the class is negated or not. e.g., `\d` is not negated but /// `\D` is. pub negated: bool, } /// The available Perl character classes. #[derive(Clone, Debug, Eq, PartialEq)] pub enum ClassPerlKind { /// Decimal numbers. Digit, /// Whitespace. Space, /// Word characters. Word, } /// An ASCII character class. #[derive(Clone, Debug, Eq, PartialEq)] pub struct ClassAscii { /// The span of this class. pub span: Span, /// The kind of ASCII class. pub kind: ClassAsciiKind, /// Whether the class is negated or not. e.g., `[[:alpha:]]` is not negated /// but `[[:^alpha:]]` is. pub negated: bool, } /// The available ASCII character classes. #[derive(Clone, Debug, Eq, PartialEq)] pub enum ClassAsciiKind { /// `[0-9A-Za-z]` Alnum, /// `[A-Za-z]` Alpha, /// `[\x00-\x7F]` Ascii, /// `[ \t]` Blank, /// `[\x00-\x1F\x7F]` Cntrl, /// `[0-9]` Digit, /// `[!-~]` Graph, /// `[a-z]` Lower, /// `[ -~]` Print, /// `[!-/:-@\[-`{-~]` Punct, /// `[\t\n\v\f\r ]` Space, /// `[A-Z]` Upper, /// `[0-9A-Za-z_]` Word, /// `[0-9A-Fa-f]` Xdigit, } impl ClassAsciiKind { /// Return the corresponding ClassAsciiKind variant for the given name. /// /// The name given should correspond to the lowercase version of the /// variant name. e.g., `cntrl` is the name for `ClassAsciiKind::Cntrl`. /// /// If no variant with the corresponding name exists, then `None` is /// returned. pub fn from_name(name: &str) -> Option<ClassAsciiKind> { use self::ClassAsciiKind::*; match name { "alnum" => Some(Alnum), "alpha" => Some(Alpha), "ascii" => Some(Ascii), "blank" => Some(Blank), "cntrl" => Some(Cntrl), "digit" => Some(Digit), "graph" => Some(Graph), "lower" => Some(Lower), "print" => Some(Print), "punct" => Some(Punct), "space" => Some(Space), "upper" => Some(Upper), "word" => Some(Word), "xdigit" => Some(Xdigit), _ => None, } } } /// A Unicode character class. #[derive(Clone, Debug, Eq, PartialEq)] pub struct ClassUnicode { /// The span of this class. pub span: Span, /// Whether this class is negated or not. /// /// Note: be careful when using this attribute. This specifically refers /// to whether the class is written as `\p` or `\P`, where the latter /// is `negated = true`. However, it also possible to write something like /// `\P{scx!=Katakana}` which is actually equivalent to /// `\p{scx=Katakana}` and is therefore not actually negated even though /// `negated = true` here. To test whether this class is truly negated /// or not, use the `is_negated` method. pub negated: bool, /// The kind of Unicode class. pub kind: ClassUnicodeKind, } impl ClassUnicode { /// Returns true if this class has been negated. /// /// Note that this takes the Unicode op into account, if it's present. /// e.g., `is_negated` for `\P{scx!=Katakana}` will return `false`. pub fn is_negated(&self) -> bool { match self.kind { ClassUnicodeKind::NamedValue { op: ClassUnicodeOpKind::NotEqual, .. } => !self.negated, _ => self.negated, } } } /// The available forms of Unicode character classes. #[derive(Clone, Debug, Eq, PartialEq)] pub enum ClassUnicodeKind { /// A one letter abbreviated class, e.g., `\pN`. OneLetter(char), /// A binary property, general category or script. The string may be /// empty. Named(String), /// A property name and an associated value. NamedValue { /// The type of Unicode op used to associate `name` with `value`. op: ClassUnicodeOpKind, /// The property name (which may be empty). name: String, /// The property value (which may be empty). value: String, }, } /// The type of op used in a Unicode character class. #[derive(Clone, Debug, Eq, PartialEq)] pub enum ClassUnicodeOpKind { /// A property set to a specific value, e.g., `\p{scx=Katakana}`. Equal, /// A property set to a specific value using a colon, e.g., /// `\p{scx:Katakana}`. Colon, /// A property that isn't a particular value, e.g., `\p{scx!=Katakana}`. NotEqual, } impl ClassUnicodeOpKind { /// Whether the op is an equality op or not. pub fn is_equal(&self) -> bool { match *self { ClassUnicodeOpKind::Equal | ClassUnicodeOpKind::Colon => true, _ => false, } } } /// A bracketed character class, e.g., `[a-z0-9]`. #[derive(Clone, Debug, Eq, PartialEq)] pub struct ClassBracketed { /// The span of this class. pub span: Span, /// Whether this class is negated or not. e.g., `[a]` is not negated but /// `[^a]` is. pub negated: bool, /// The type of this set. A set is either a normal union of things, e.g., /// `[abc]` or a result of applying set operations, e.g., `[\pL--c]`. pub kind: ClassSet, } /// A character class set. /// /// This type corresponds to the internal structure of a bracketed character /// class. That is, every bracketed character is one of two types: a union of /// items (literals, ranges, other bracketed classes) or a tree of binary set /// operations. #[derive(Clone, Debug, Eq, PartialEq)] pub enum ClassSet { /// An item, which can be a single literal, range, nested character class /// or a union of items. Item(ClassSetItem), /// A single binary operation (i.e., &&, -- or ~~). BinaryOp(ClassSetBinaryOp), } impl ClassSet { /// Build a set from a union. pub fn union(ast: ClassSetUnion) -> ClassSet { ClassSet::Item(ClassSetItem::Union(ast)) } /// Return the span of this character class set. pub fn span(&self) -> &Span { match *self { ClassSet::Item(ref x) => x.span(), ClassSet::BinaryOp(ref x) => &x.span, } } /// Return true if and only if this class set is empty. fn is_empty(&self) -> bool { match *self { ClassSet::Item(ClassSetItem::Empty(_)) => true, _ => false, } } } /// A single component of a character class set. #[derive(Clone, Debug, Eq, PartialEq)] pub enum ClassSetItem { /// An empty item. /// /// Note that a bracketed character class cannot contain a single empty /// item. Empty items can appear when using one of the binary operators. /// For example, `[&&]` is the intersection of two empty classes. Empty(Span), /// A single literal. Literal(Literal), /// A range between two literals. Range(ClassSetRange), /// An ASCII character class, e.g., `[:alnum:]` or `[:punct:]`. Ascii(ClassAscii), /// A Unicode character class, e.g., `\pL` or `\p{Greek}`. Unicode(ClassUnicode), /// A perl character class, e.g., `\d` or `\W`. Perl(ClassPerl), /// A bracketed character class set, which may contain zero or more /// character ranges and/or zero or more nested classes. e.g., /// `[a-zA-Z\pL]`. Bracketed(Box<ClassBracketed>), /// A union of items. Union(ClassSetUnion), } impl ClassSetItem { /// Return the span of this character class set item. pub fn span(&self) -> &Span { match *self { ClassSetItem::Empty(ref span) => span, ClassSetItem::Literal(ref x) => &x.span, ClassSetItem::Range(ref x) => &x.span, ClassSetItem::Ascii(ref x) => &x.span, ClassSetItem::Perl(ref x) => &x.span, ClassSetItem::Unicode(ref x) => &x.span, ClassSetItem::Bracketed(ref x) => &x.span, ClassSetItem::Union(ref x) => &x.span, } } } /// A single character class range in a set. #[derive(Clone, Debug, Eq, PartialEq)] pub struct ClassSetRange { /// The span of this range. pub span: Span, /// The start of this range. pub start: Literal, /// The end of this range. pub end: Literal, } impl ClassSetRange { /// Returns true if and only if this character class range is valid. /// /// The only case where a range is invalid is if its start is greater than /// its end. pub fn is_valid(&self) -> bool { self.start.c <= self.end.c } } /// A union of items inside a character class set. #[derive(Clone, Debug, Eq, PartialEq)] pub struct ClassSetUnion { /// The span of the items in this operation. e.g., the `a-z0-9` in /// `[^a-z0-9]` pub span: Span, /// The sequence of items that make up this union. pub items: Vec<ClassSetItem>, } impl ClassSetUnion { /// Push a new item in this union. /// /// The ending position of this union's span is updated to the ending /// position of the span of the item given. If the union is empty, then /// the starting position of this union is set to the starting position /// of this item. /// /// In other words, if you only use this method to add items to a union /// and you set the spans on each item correctly, then you should never /// need to adjust the span of the union directly. pub fn push(&mut self, item: ClassSetItem) { if self.items.is_empty() { self.span.start = item.span().start; } self.span.end = item.span().end; self.items.push(item); } /// Return this union as a character class set item. /// /// If this union contains zero items, then an empty union is /// returned. If this concatenation contains exactly 1 item, then the /// corresponding item is returned. Otherwise, ClassSetItem::Union is /// returned. pub fn into_item(mut self) -> ClassSetItem { match self.items.len() { 0 => ClassSetItem::Empty(self.span), 1 => self.items.pop().unwrap(), _ => ClassSetItem::Union(self), } } } /// A Unicode character class set operation. #[derive(Clone, Debug, Eq, PartialEq)] pub struct ClassSetBinaryOp { /// The span of this operation. e.g., the `a-z--[h-p]` in `[a-z--h-p]`. pub span: Span, /// The type of this set operation. pub kind: ClassSetBinaryOpKind, /// The left hand side of the operation. pub lhs: Box<ClassSet>, /// The right hand side of the operation. pub rhs: Box<ClassSet>, } /// The type of a Unicode character class set operation. /// /// Note that this doesn't explicitly represent union since there is no /// explicit union operator. Concatenation inside a character class corresponds /// to the union operation. #[derive(Clone, Copy, Debug, Eq, PartialEq)] pub enum ClassSetBinaryOpKind { /// The intersection of two sets, e.g., `\pN&&[a-z]`. Intersection, /// The difference of two sets, e.g., `\pN--[0-9]`. Difference, /// The symmetric difference of two sets. The symmetric difference is the /// set of elements belonging to one but not both sets. /// e.g., `[\pL~~[:ascii:]]`. SymmetricDifference, } /// A single zero-width assertion. #[derive(Clone, Debug, Eq, PartialEq)] pub struct Assertion { /// The span of this assertion. pub span: Span, /// The assertion kind, e.g., `\b` or `^`. pub kind: AssertionKind, } /// An assertion kind. #[derive(Clone, Debug, Eq, PartialEq)] pub enum AssertionKind { /// `^` StartLine, /// `$` EndLine, /// `\A` StartText, /// `\z` EndText, /// `\b` WordBoundary, /// `\B` NotWordBoundary, } /// A repetition operation applied to a regular expression. #[derive(Clone, Debug, Eq, PartialEq)] pub struct Repetition { /// The span of this operation. pub span: Span, /// The actual operation. pub op: RepetitionOp, /// Whether this operation was applied greedily or not. pub greedy: bool, /// The regular expression under repetition. pub ast: Box<Ast>, } /// The repetition operator itself. #[derive(Clone, Debug, Eq, PartialEq)] pub struct RepetitionOp { /// The span of this operator. This includes things like `+`, `*?` and /// `{m,n}`. pub span: Span, /// The type of operation. pub kind: RepetitionKind, } /// The kind of a repetition operator. #[derive(Clone, Debug, Eq, PartialEq)] pub enum RepetitionKind { /// `?` ZeroOrOne, /// `*` ZeroOrMore, /// `+` OneOrMore, /// `{m,n}` Range(RepetitionRange), } /// A range repetition operator. #[derive(Clone, Debug, Eq, PartialEq)] pub enum RepetitionRange { /// `{m}` Exactly(u32), /// `{m,}` AtLeast(u32), /// `{m,n}` Bounded(u32, u32), } impl RepetitionRange { /// Returns true if and only if this repetition range is valid. /// /// The only case where a repetition range is invalid is if it is bounded /// and its start is greater than its end. pub fn is_valid(&self) -> bool { match *self { RepetitionRange::Bounded(s, e) if s > e => false, _ => true, } } } /// A grouped regular expression. /// /// This includes both capturing and non-capturing groups. This does **not** /// include flag-only groups like `(?is)`, but does contain any group that /// contains a sub-expression, e.g., `(a)`, `(?P<name>a)`, `(?:a)` and /// `(?is:a)`. #[derive(Clone, Debug, Eq, PartialEq)] pub struct Group { /// The span of this group. pub span: Span, /// The kind of this group. pub kind: GroupKind, /// The regular expression in this group. pub ast: Box<Ast>, } impl Group { /// If this group is non-capturing, then this returns the (possibly empty) /// set of flags. Otherwise, `None` is returned. pub fn flags(&self) -> Option<&Flags> { match self.kind { GroupKind::NonCapturing(ref flags) => Some(flags), _ => None, } } /// Returns true if and only if this group is capturing. pub fn is_capturing(&self) -> bool { match self.kind { GroupKind::CaptureIndex(_) | GroupKind::CaptureName(_) => true, GroupKind::NonCapturing(_) => false, } } /// Returns the capture index of this group, if this is a capturing group. /// /// This returns a capture index precisely when `is_capturing` is `true`. pub fn capture_index(&self) -> Option<u32> { match self.kind { GroupKind::CaptureIndex(i) => Some(i), GroupKind::CaptureName(ref x) => Some(x.index), GroupKind::NonCapturing(_) => None, } } } /// The kind of a group. #[derive(Clone, Debug, Eq, PartialEq)] pub enum GroupKind { /// `(a)` CaptureIndex(u32), /// `(?P<name>a)` CaptureName(CaptureName), /// `(?:a)` and `(?i:a)` NonCapturing(Flags), } /// A capture name. /// /// This corresponds to the name itself between the angle brackets in, e.g., /// `(?P<foo>expr)`. #[derive(Clone, Debug, Eq, PartialEq)] pub struct CaptureName { /// The span of this capture name. pub span: Span, /// The capture name. pub name: String, /// The capture index. pub index: u32, } /// A group of flags that is not applied to a particular regular expression. #[derive(Clone, Debug, Eq, PartialEq)] pub struct SetFlags { /// The span of these flags, including the grouping parentheses. pub span: Span, /// The actual sequence of flags. pub flags: Flags, } /// A group of flags. /// /// This corresponds only to the sequence of flags themselves, e.g., `is-u`. #[derive(Clone, Debug, Eq, PartialEq)] pub struct Flags { /// The span of this group of flags. pub span: Span, /// A sequence of flag items. Each item is either a flag or a negation /// operator. pub items: Vec<FlagsItem>, } impl Flags { /// Add the given item to this sequence of flags. /// /// If the item was added successfully, then `None` is returned. If the /// given item is a duplicate, then `Some(i)` is returned, where /// `items[i].kind == item.kind`. pub fn add_item(&mut self, item: FlagsItem) -> Option<usize> { for (i, x) in self.items.iter().enumerate() { if x.kind == item.kind { return Some(i); } } self.items.push(item); None } /// Returns the state of the given flag in this set. /// /// If the given flag is in the set but is negated, then `Some(false)` is /// returned. /// /// If the given flag is in the set and is not negated, then `Some(true)` /// is returned. /// /// Otherwise, `None` is returned. pub fn flag_state(&self, flag: Flag) -> Option<bool> { let mut negated = false; for x in &self.items { match x.kind { FlagsItemKind::Negation => { negated = true; } FlagsItemKind::Flag(ref xflag) if xflag == &flag => { return Some(!negated); } _ => {} } } None } } /// A single item in a group of flags. #[derive(Clone, Debug, Eq, PartialEq)] pub struct FlagsItem { /// The span of this item. pub span: Span, /// The kind of this item. pub kind: FlagsItemKind, } /// The kind of an item in a group of flags. #[derive(Clone, Debug, Eq, PartialEq)] pub enum FlagsItemKind { /// A negation operator applied to all subsequent flags in the enclosing /// group. Negation, /// A single flag in a group. Flag(Flag), } impl FlagsItemKind { /// Returns true if and only if this item is a negation operator. pub fn is_negation(&self) -> bool { match *self { FlagsItemKind::Negation => true, _ => false, } } } /// A single flag. #[derive(Clone, Copy, Debug, Eq, PartialEq)] pub enum Flag { /// `i` CaseInsensitive, /// `m` MultiLine, /// `s` DotMatchesNewLine, /// `U` SwapGreed, /// `u` Unicode, /// `x` IgnoreWhitespace, } /// A custom `Drop` impl is used for `Ast` such that it uses constant stack /// space but heap space proportional to the depth of the `Ast`. impl Drop for Ast { fn drop(&mut self) { use std::mem; match *self { Ast::Empty(_) | Ast::Flags(_) | Ast::Literal(_) | Ast::Dot(_) | Ast::Assertion(_) // Classes are recursive, so they get their own Drop impl. | Ast::Class(_) => return, Ast::Repetition(ref x) if !x.ast.has_subexprs() => return, Ast::Group(ref x) if !x.ast.has_subexprs() => return, Ast::Alternation(ref x) if x.asts.is_empty() => return, Ast::Concat(ref x) if x.asts.is_empty() => return, _ => {} } let empty_span = || Span::splat(Position::new(0, 0, 0)); let empty_ast = || Ast::Empty(empty_span()); let mut stack = vec![mem::replace(self, empty_ast())]; while let Some(mut ast) = stack.pop() { match ast { Ast::Empty(_) | Ast::Flags(_) | Ast::Literal(_) | Ast::Dot(_) | Ast::Assertion(_) // Classes are recursive, so they get their own Drop impl. | Ast::Class(_) => {} Ast::Repetition(ref mut x) => { stack.push(mem::replace(&mut x.ast, empty_ast())); } Ast::Group(ref mut x) => { stack.push(mem::replace(&mut x.ast, empty_ast())); } Ast::Alternation(ref mut x) => { stack.extend(x.asts.drain(..)); } Ast::Concat(ref mut x) => { stack.extend(x.asts.drain(..)); } } } } } /// A custom `Drop` impl is used for `ClassSet` such that it uses constant /// stack space but heap space proportional to the depth of the `ClassSet`. impl Drop for ClassSet { fn drop(&mut self) { use std::mem; match *self { ClassSet::Item(ref item) => match *item { ClassSetItem::Empty(_) | ClassSetItem::Literal(_) | ClassSetItem::Range(_) | ClassSetItem::Ascii(_) | ClassSetItem::Unicode(_) | ClassSetItem::Perl(_) => return, ClassSetItem::Bracketed(ref x) => { if x.kind.is_empty() { return; } } ClassSetItem::Union(ref x) => { if x.items.is_empty() { return; } } }, ClassSet::BinaryOp(ref op) => { if op.lhs.is_empty() && op.rhs.is_empty() { return; } } } let empty_span = || Span::splat(Position::new(0, 0, 0)); let empty_set = || ClassSet::Item(ClassSetItem::Empty(empty_span())); let mut stack = vec![mem::replace(self, empty_set())]; while let Some(mut set) = stack.pop() { match set { ClassSet::Item(ref mut item) => match *item { ClassSetItem::Empty(_) | ClassSetItem::Literal(_) | ClassSetItem::Range(_) | ClassSetItem::Ascii(_) | ClassSetItem::Unicode(_) | ClassSetItem::Perl(_) => {} ClassSetItem::Bracketed(ref mut x) => { stack.push(mem::replace(&mut x.kind, empty_set())); } ClassSetItem::Union(ref mut x) => { stack.extend(x.items.drain(..).map(ClassSet::Item)); } }, ClassSet::BinaryOp(ref mut op) => { stack.push(mem::replace(&mut op.lhs, empty_set())); stack.push(mem::replace(&mut op.rhs, empty_set())); } } } } } #[cfg(test)] mod tests { use super::*; // We use a thread with an explicit stack size to test that our destructor // for Ast can handle arbitrarily sized expressions in constant stack // space. In case we run on a platform without threads (WASM?), we limit // this test to Windows/Unix. #[test] #[cfg(any(unix, windows))] fn no_stack_overflow_on_drop() { use std::thread; let run = || { let span = || Span::splat(Position::new(0, 0, 0)); let mut ast = Ast::Empty(span()); for i in 0..200 { ast = Ast::Group(Group { span: span(), kind: GroupKind::CaptureIndex(i), ast: Box::new(ast), }); } assert!(!ast.is_empty()); }; // We run our test on a thread with a small stack size so we can // force the issue more easily. thread::Builder::new() .stack_size(1 << 10) .spawn(run) .unwrap() .join() .unwrap(); } }