1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
use std::fmt; use ast::{self, Ast}; /// A trait for visiting an abstract syntax tree (AST) in depth first order. /// /// The principle aim of this trait is to enable callers to perform case /// analysis on an abstract syntax tree without necessarily using recursion. /// In particular, this permits callers to do case analysis with constant stack /// usage, which can be important since the size of an abstract syntax tree /// may be proportional to end user input. /// /// Typical usage of this trait involves providing an implementation and then /// running it using the [`visit`](fn.visit.html) function. /// /// Note that the abstract syntax tree for a regular expression is quite /// complex. Unless you specifically need it, you might be able to use the /// much simpler /// [high-level intermediate representation](../hir/struct.Hir.html) /// and its /// [corresponding `Visitor` trait](../hir/trait.Visitor.html) /// instead. pub trait Visitor { /// The result of visiting an AST. type Output; /// An error that visiting an AST might return. type Err; /// All implementors of `Visitor` must provide a `finish` method, which /// yields the result of visiting the AST or an error. fn finish(self) -> Result<Self::Output, Self::Err>; /// This method is called before beginning traversal of the AST. fn start(&mut self) {} /// This method is called on an `Ast` before descending into child `Ast` /// nodes. fn visit_pre(&mut self, _ast: &Ast) -> Result<(), Self::Err> { Ok(()) } /// This method is called on an `Ast` after descending all of its child /// `Ast` nodes. fn visit_post(&mut self, _ast: &Ast) -> Result<(), Self::Err> { Ok(()) } /// This method is called between child nodes of an /// [`Alternation`](struct.Alternation.html). fn visit_alternation_in(&mut self) -> Result<(), Self::Err> { Ok(()) } /// This method is called on every /// [`ClassSetItem`](enum.ClassSetItem.html) /// before descending into child nodes. fn visit_class_set_item_pre( &mut self, _ast: &ast::ClassSetItem, ) -> Result<(), Self::Err> { Ok(()) } /// This method is called on every /// [`ClassSetItem`](enum.ClassSetItem.html) /// after descending into child nodes. fn visit_class_set_item_post( &mut self, _ast: &ast::ClassSetItem, ) -> Result<(), Self::Err> { Ok(()) } /// This method is called on every /// [`ClassSetBinaryOp`](struct.ClassSetBinaryOp.html) /// before descending into child nodes. fn visit_class_set_binary_op_pre( &mut self, _ast: &ast::ClassSetBinaryOp, ) -> Result<(), Self::Err> { Ok(()) } /// This method is called on every /// [`ClassSetBinaryOp`](struct.ClassSetBinaryOp.html) /// after descending into child nodes. fn visit_class_set_binary_op_post( &mut self, _ast: &ast::ClassSetBinaryOp, ) -> Result<(), Self::Err> { Ok(()) } /// This method is called between the left hand and right hand child nodes /// of a [`ClassSetBinaryOp`](struct.ClassSetBinaryOp.html). fn visit_class_set_binary_op_in( &mut self, _ast: &ast::ClassSetBinaryOp, ) -> Result<(), Self::Err> { Ok(()) } } /// Executes an implementation of `Visitor` in constant stack space. /// /// This function will visit every node in the given `Ast` while calling the /// appropriate methods provided by the /// [`Visitor`](trait.Visitor.html) trait. /// /// The primary use case for this method is when one wants to perform case /// analysis over an `Ast` without using a stack size proportional to the depth /// of the `Ast`. Namely, this method will instead use constant stack size, but /// will use heap space proportional to the size of the `Ast`. This may be /// desirable in cases where the size of `Ast` is proportional to end user /// input. /// /// If the visitor returns an error at any point, then visiting is stopped and /// the error is returned. pub fn visit<V: Visitor>(ast: &Ast, visitor: V) -> Result<V::Output, V::Err> { HeapVisitor::new().visit(ast, visitor) } /// HeapVisitor visits every item in an `Ast` recursively using constant stack /// size and a heap size proportional to the size of the `Ast`. struct HeapVisitor<'a> { /// A stack of `Ast` nodes. This is roughly analogous to the call stack /// used in a typical recursive visitor. stack: Vec<(&'a Ast, Frame<'a>)>, /// Similar to the `Ast` stack above, but is used only for character /// classes. In particular, character classes embed their own mini /// recursive syntax. stack_class: Vec<(ClassInduct<'a>, ClassFrame<'a>)>, } /// Represents a single stack frame while performing structural induction over /// an `Ast`. enum Frame<'a> { /// A stack frame allocated just before descending into a repetition /// operator's child node. Repetition(&'a ast::Repetition), /// A stack frame allocated just before descending into a group's child /// node. Group(&'a ast::Group), /// The stack frame used while visiting every child node of a concatenation /// of expressions. Concat { /// The child node we are currently visiting. head: &'a Ast, /// The remaining child nodes to visit (which may be empty). tail: &'a [Ast], }, /// The stack frame used while visiting every child node of an alternation /// of expressions. Alternation { /// The child node we are currently visiting. head: &'a Ast, /// The remaining child nodes to visit (which may be empty). tail: &'a [Ast], }, } /// Represents a single stack frame while performing structural induction over /// a character class. enum ClassFrame<'a> { /// The stack frame used while visiting every child node of a union of /// character class items. Union { /// The child node we are currently visiting. head: &'a ast::ClassSetItem, /// The remaining child nodes to visit (which may be empty). tail: &'a [ast::ClassSetItem], }, /// The stack frame used while a binary class operation. Binary { op: &'a ast::ClassSetBinaryOp }, /// A stack frame allocated just before descending into a binary operator's /// left hand child node. BinaryLHS { op: &'a ast::ClassSetBinaryOp, lhs: &'a ast::ClassSet, rhs: &'a ast::ClassSet, }, /// A stack frame allocated just before descending into a binary operator's /// right hand child node. BinaryRHS { op: &'a ast::ClassSetBinaryOp, rhs: &'a ast::ClassSet }, } /// A representation of the inductive step when performing structural induction /// over a character class. /// /// Note that there is no analogous explicit type for the inductive step for /// `Ast` nodes because the inductive step is just an `Ast`. For character /// classes, the inductive step can produce one of two possible child nodes: /// an item or a binary operation. (An item cannot be a binary operation /// because that would imply binary operations can be unioned in the concrete /// syntax, which is not possible.) enum ClassInduct<'a> { Item(&'a ast::ClassSetItem), BinaryOp(&'a ast::ClassSetBinaryOp), } impl<'a> HeapVisitor<'a> { fn new() -> HeapVisitor<'a> { HeapVisitor { stack: vec![], stack_class: vec![] } } fn visit<V: Visitor>( &mut self, mut ast: &'a Ast, mut visitor: V, ) -> Result<V::Output, V::Err> { self.stack.clear(); self.stack_class.clear(); visitor.start(); loop { visitor.visit_pre(ast)?; if let Some(x) = self.induct(ast, &mut visitor)? { let child = x.child(); self.stack.push((ast, x)); ast = child; continue; } // No induction means we have a base case, so we can post visit // it now. visitor.visit_post(ast)?; // At this point, we now try to pop our call stack until it is // either empty or we hit another inductive case. loop { let (post_ast, frame) = match self.stack.pop() { None => return visitor.finish(), Some((post_ast, frame)) => (post_ast, frame), }; // If this is a concat/alternate, then we might have additional // inductive steps to process. if let Some(x) = self.pop(frame) { if let Frame::Alternation { .. } = x { visitor.visit_alternation_in()?; } ast = x.child(); self.stack.push((post_ast, x)); break; } // Otherwise, we've finished visiting all the child nodes for // this AST, so we can post visit it now. visitor.visit_post(post_ast)?; } } } /// Build a stack frame for the given AST if one is needed (which occurs if /// and only if there are child nodes in the AST). Otherwise, return None. /// /// If this visits a class, then the underlying visitor implementation may /// return an error which will be passed on here. fn induct<V: Visitor>( &mut self, ast: &'a Ast, visitor: &mut V, ) -> Result<Option<Frame<'a>>, V::Err> { Ok(match *ast { Ast::Class(ast::Class::Bracketed(ref x)) => { self.visit_class(x, visitor)?; None } Ast::Repetition(ref x) => Some(Frame::Repetition(x)), Ast::Group(ref x) => Some(Frame::Group(x)), Ast::Concat(ref x) if x.asts.is_empty() => None, Ast::Concat(ref x) => { Some(Frame::Concat { head: &x.asts[0], tail: &x.asts[1..] }) } Ast::Alternation(ref x) if x.asts.is_empty() => None, Ast::Alternation(ref x) => Some(Frame::Alternation { head: &x.asts[0], tail: &x.asts[1..], }), _ => None, }) } /// Pops the given frame. If the frame has an additional inductive step, /// then return it, otherwise return `None`. fn pop(&self, induct: Frame<'a>) -> Option<Frame<'a>> { match induct { Frame::Repetition(_) => None, Frame::Group(_) => None, Frame::Concat { tail, .. } => { if tail.is_empty() { None } else { Some(Frame::Concat { head: &tail[0], tail: &tail[1..] }) } } Frame::Alternation { tail, .. } => { if tail.is_empty() { None } else { Some(Frame::Alternation { head: &tail[0], tail: &tail[1..], }) } } } } fn visit_class<V: Visitor>( &mut self, ast: &'a ast::ClassBracketed, visitor: &mut V, ) -> Result<(), V::Err> { let mut ast = ClassInduct::from_bracketed(ast); loop { self.visit_class_pre(&ast, visitor)?; if let Some(x) = self.induct_class(&ast) { let child = x.child(); self.stack_class.push((ast, x)); ast = child; continue; } self.visit_class_post(&ast, visitor)?; // At this point, we now try to pop our call stack until it is // either empty or we hit another inductive case. loop { let (post_ast, frame) = match self.stack_class.pop() { None => return Ok(()), Some((post_ast, frame)) => (post_ast, frame), }; // If this is a union or a binary op, then we might have // additional inductive steps to process. if let Some(x) = self.pop_class(frame) { if let ClassFrame::BinaryRHS { ref op, .. } = x { visitor.visit_class_set_binary_op_in(op)?; } ast = x.child(); self.stack_class.push((post_ast, x)); break; } // Otherwise, we've finished visiting all the child nodes for // this class node, so we can post visit it now. self.visit_class_post(&post_ast, visitor)?; } } } /// Call the appropriate `Visitor` methods given an inductive step. fn visit_class_pre<V: Visitor>( &self, ast: &ClassInduct<'a>, visitor: &mut V, ) -> Result<(), V::Err> { match *ast { ClassInduct::Item(item) => { visitor.visit_class_set_item_pre(item)?; } ClassInduct::BinaryOp(op) => { visitor.visit_class_set_binary_op_pre(op)?; } } Ok(()) } /// Call the appropriate `Visitor` methods given an inductive step. fn visit_class_post<V: Visitor>( &self, ast: &ClassInduct<'a>, visitor: &mut V, ) -> Result<(), V::Err> { match *ast { ClassInduct::Item(item) => { visitor.visit_class_set_item_post(item)?; } ClassInduct::BinaryOp(op) => { visitor.visit_class_set_binary_op_post(op)?; } } Ok(()) } /// Build a stack frame for the given class node if one is needed (which /// occurs if and only if there are child nodes). Otherwise, return None. fn induct_class(&self, ast: &ClassInduct<'a>) -> Option<ClassFrame<'a>> { match *ast { ClassInduct::Item(&ast::ClassSetItem::Bracketed(ref x)) => { match x.kind { ast::ClassSet::Item(ref item) => { Some(ClassFrame::Union { head: item, tail: &[] }) } ast::ClassSet::BinaryOp(ref op) => { Some(ClassFrame::Binary { op: op }) } } } ClassInduct::Item(&ast::ClassSetItem::Union(ref x)) => { if x.items.is_empty() { None } else { Some(ClassFrame::Union { head: &x.items[0], tail: &x.items[1..], }) } } ClassInduct::BinaryOp(op) => Some(ClassFrame::BinaryLHS { op: op, lhs: &op.lhs, rhs: &op.rhs, }), _ => None, } } /// Pops the given frame. If the frame has an additional inductive step, /// then return it, otherwise return `None`. fn pop_class(&self, induct: ClassFrame<'a>) -> Option<ClassFrame<'a>> { match induct { ClassFrame::Union { tail, .. } => { if tail.is_empty() { None } else { Some(ClassFrame::Union { head: &tail[0], tail: &tail[1..], }) } } ClassFrame::Binary { .. } => None, ClassFrame::BinaryLHS { op, rhs, .. } => { Some(ClassFrame::BinaryRHS { op: op, rhs: rhs }) } ClassFrame::BinaryRHS { .. } => None, } } } impl<'a> Frame<'a> { /// Perform the next inductive step on this frame and return the next /// child AST node to visit. fn child(&self) -> &'a Ast { match *self { Frame::Repetition(rep) => &rep.ast, Frame::Group(group) => &group.ast, Frame::Concat { head, .. } => head, Frame::Alternation { head, .. } => head, } } } impl<'a> ClassFrame<'a> { /// Perform the next inductive step on this frame and return the next /// child class node to visit. fn child(&self) -> ClassInduct<'a> { match *self { ClassFrame::Union { head, .. } => ClassInduct::Item(head), ClassFrame::Binary { op, .. } => ClassInduct::BinaryOp(op), ClassFrame::BinaryLHS { ref lhs, .. } => { ClassInduct::from_set(lhs) } ClassFrame::BinaryRHS { ref rhs, .. } => { ClassInduct::from_set(rhs) } } } } impl<'a> ClassInduct<'a> { fn from_bracketed(ast: &'a ast::ClassBracketed) -> ClassInduct<'a> { ClassInduct::from_set(&ast.kind) } fn from_set(ast: &'a ast::ClassSet) -> ClassInduct<'a> { match *ast { ast::ClassSet::Item(ref item) => ClassInduct::Item(item), ast::ClassSet::BinaryOp(ref op) => ClassInduct::BinaryOp(op), } } } impl<'a> fmt::Debug for ClassFrame<'a> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let x = match *self { ClassFrame::Union { .. } => "Union", ClassFrame::Binary { .. } => "Binary", ClassFrame::BinaryLHS { .. } => "BinaryLHS", ClassFrame::BinaryRHS { .. } => "BinaryRHS", }; write!(f, "{}", x) } } impl<'a> fmt::Debug for ClassInduct<'a> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let x = match *self { ClassInduct::Item(it) => match *it { ast::ClassSetItem::Empty(_) => "Item(Empty)", ast::ClassSetItem::Literal(_) => "Item(Literal)", ast::ClassSetItem::Range(_) => "Item(Range)", ast::ClassSetItem::Ascii(_) => "Item(Ascii)", ast::ClassSetItem::Perl(_) => "Item(Perl)", ast::ClassSetItem::Unicode(_) => "Item(Unicode)", ast::ClassSetItem::Bracketed(_) => "Item(Bracketed)", ast::ClassSetItem::Union(_) => "Item(Union)", }, ClassInduct::BinaryOp(it) => match it.kind { ast::ClassSetBinaryOpKind::Intersection => { "BinaryOp(Intersection)" } ast::ClassSetBinaryOpKind::Difference => { "BinaryOp(Difference)" } ast::ClassSetBinaryOpKind::SymmetricDifference => { "BinaryOp(SymmetricDifference)" } }, }; write!(f, "{}", x) } }