1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
// This file is part of Substrate.

// Copyright (C) 2017-2020 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: GPL-3.0-or-later WITH Classpath-exception-2.0

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.

//! Canonical hash trie definitions and helper functions.
//!
//! Each CHT is a trie mapping block numbers to canonical hash.
//! One is generated for every `SIZE` blocks, allowing us to discard those blocks in
//! favor of the trie root. When the "ancient" blocks need to be accessed, we simply
//! request an inclusion proof of a specific block number against the trie with the
//! root has. A correct proof implies that the claimed block is identical to the one
//! we discarded.

use hash_db;
use codec::Encode;
use sp_trie;

use sp_core::{H256, convert_hash};
use sp_runtime::traits::{Header as HeaderT, AtLeast32Bit, Zero, One};
use sp_state_machine::{
	MemoryDB, TrieBackend, Backend as StateBackend, StorageProof, InMemoryBackend,
	prove_read_on_trie_backend, read_proof_check, read_proof_check_on_proving_backend
};

use sp_blockchain::{Error as ClientError, Result as ClientResult};

/// The size of each CHT. This value is passed to every CHT-related function from
/// production code. Other values are passed from tests.
const SIZE: u32 = 2048;

/// Gets default CHT size.
pub fn size<N: From<u32>>() -> N {
	SIZE.into()
}

/// Returns Some(cht_number) if CHT is need to be built when the block with given number is canonized.
pub fn is_build_required<N>(cht_size: N, block_num: N) -> Option<N>
	where
		N: Clone + AtLeast32Bit,
{
	let block_cht_num = block_to_cht_number(cht_size.clone(), block_num.clone())?;
	let two = N::one() + N::one();
	if block_cht_num < two {
		return None;
	}
	let cht_start = start_number(cht_size, block_cht_num.clone());
	if cht_start != block_num {
		return None;
	}

	Some(block_cht_num - two)
}

/// Returns Some(max_cht_number) if CHT has ever been built given maximal canonical block number.
pub fn max_cht_number<N>(cht_size: N, max_canonical_block: N) -> Option<N>
	where
		N: Clone + AtLeast32Bit,
{
	let max_cht_number = block_to_cht_number(cht_size, max_canonical_block)?;
	let two = N::one() + N::one();
	if max_cht_number < two {
		return None;
	}
	Some(max_cht_number - two)
}

/// Compute a CHT root from an iterator of block hashes. Fails if shorter than
/// SIZE items. The items are assumed to proceed sequentially from `start_number(cht_num)`.
/// Discards the trie's nodes.
pub fn compute_root<Header, Hasher, I>(
	cht_size: Header::Number,
	cht_num: Header::Number,
	hashes: I,
) -> ClientResult<Hasher::Out>
	where
		Header: HeaderT,
		Hasher: hash_db::Hasher,
		Hasher::Out: Ord,
		I: IntoIterator<Item=ClientResult<Option<Header::Hash>>>,
{
	use sp_trie::TrieConfiguration;
	Ok(sp_trie::trie_types::Layout::<Hasher>::trie_root(
		build_pairs::<Header, I>(cht_size, cht_num, hashes)?
	))
}

/// Build CHT-based header proof.
pub fn build_proof<Header, Hasher, BlocksI, HashesI>(
	cht_size: Header::Number,
	cht_num: Header::Number,
	blocks: BlocksI,
	hashes: HashesI
) -> ClientResult<StorageProof>
	where
		Header: HeaderT,
		Hasher: hash_db::Hasher,
		Hasher::Out: Ord + codec::Codec,
		BlocksI: IntoIterator<Item=Header::Number>,
		HashesI: IntoIterator<Item=ClientResult<Option<Header::Hash>>>,
{
	let transaction = build_pairs::<Header, _>(cht_size, cht_num, hashes)?
		.into_iter()
		.map(|(k, v)| (k, Some(v)))
		.collect::<Vec<_>>();
	let mut storage = InMemoryBackend::<Hasher>::default().update(vec![(None, transaction)]);
	let trie_storage = storage.as_trie_backend()
		.expect("InMemoryState::as_trie_backend always returns Some; qed");
	prove_read_on_trie_backend(
		trie_storage,
		blocks.into_iter().map(|number| encode_cht_key(number)),
	).map_err(ClientError::Execution)
}

/// Check CHT-based header proof.
pub fn check_proof<Header, Hasher>(
	local_root: Header::Hash,
	local_number: Header::Number,
	remote_hash: Header::Hash,
	remote_proof: StorageProof,
) -> ClientResult<()>
	where
		Header: HeaderT,
		Hasher: hash_db::Hasher,
		Hasher::Out: Ord + codec::Codec,
{
	do_check_proof::<Header, Hasher, _>(
		local_root,
		local_number,
		remote_hash,
		move |local_root, local_cht_key|
			read_proof_check::<Hasher, _>(
				local_root,
				remote_proof,
				::std::iter::once(local_cht_key),
			)
			.map(|mut map| map
				.remove(local_cht_key)
				.expect("checked proof of local_cht_key; qed"))
			.map_err(|e| ClientError::from(e)),
	)
}

/// Check CHT-based header proof on pre-created proving backend.
pub fn check_proof_on_proving_backend<Header, Hasher>(
	local_root: Header::Hash,
	local_number: Header::Number,
	remote_hash: Header::Hash,
	proving_backend: &TrieBackend<MemoryDB<Hasher>, Hasher>,
) -> ClientResult<()>
	where
		Header: HeaderT,
		Hasher: hash_db::Hasher,
		Hasher::Out: Ord + codec::Codec,
{
	do_check_proof::<Header, Hasher, _>(
		local_root,
		local_number,
		remote_hash,
		|_, local_cht_key|
			read_proof_check_on_proving_backend::<Hasher>(
				proving_backend,
				local_cht_key,
			).map_err(|e| ClientError::from(e)),
	)
}

/// Check CHT-based header proof using passed checker function.
fn do_check_proof<Header, Hasher, F>(
	local_root: Header::Hash,
	local_number: Header::Number,
	remote_hash: Header::Hash,
	checker: F,
) -> ClientResult<()>
	where
		Header: HeaderT,
		Hasher: hash_db::Hasher,
		Hasher::Out: Ord,
		F: FnOnce(Hasher::Out, &[u8]) -> ClientResult<Option<Vec<u8>>>,
{
	let root: Hasher::Out = convert_hash(&local_root);
	let local_cht_key = encode_cht_key(local_number);
	let local_cht_value = checker(root, &local_cht_key)?;
	let local_cht_value = local_cht_value.ok_or_else(|| ClientError::InvalidCHTProof)?;
	let local_hash = decode_cht_value(&local_cht_value).ok_or_else(|| ClientError::InvalidCHTProof)?;
	match &local_hash[..] == remote_hash.as_ref() {
		true => Ok(()),
		false => Err(ClientError::InvalidCHTProof.into()),
	}

}

/// Group ordered blocks by CHT number and call functor with blocks of each group.
pub fn for_each_cht_group<Header, I, F, P>(
	cht_size: Header::Number,
	blocks: I,
	mut functor: F,
	mut functor_param: P,
) -> ClientResult<()>
	where
		Header: HeaderT,
		I: IntoIterator<Item=Header::Number>,
		F: FnMut(P, Header::Number, Vec<Header::Number>) -> ClientResult<P>,
{
	let mut current_cht_num = None;
	let mut current_cht_blocks = Vec::new();
	for block in blocks {
		let new_cht_num = match block_to_cht_number(cht_size, block) {
			Some(new_cht_num) => new_cht_num,
			None => return Err(ClientError::Backend(format!(
				"Cannot compute CHT root for the block #{}", block)).into()
			),
		};

		let advance_to_next_cht = current_cht_num.is_some() && current_cht_num != Some(new_cht_num);
		if advance_to_next_cht {
			let current_cht_num = current_cht_num.expect("advance_to_next_cht is true;
				it is true only when current_cht_num is Some; qed");
			assert!(new_cht_num > current_cht_num, "for_each_cht_group only supports ordered iterators");

			functor_param = functor(
				functor_param,
				current_cht_num,
				std::mem::take(&mut current_cht_blocks),
			)?;
		}

		current_cht_blocks.push(block);
		current_cht_num = Some(new_cht_num);
	}

	if let Some(current_cht_num) = current_cht_num {
		functor(
			functor_param,
			current_cht_num,
			std::mem::take(&mut current_cht_blocks),
		)?;
	}

	Ok(())
}

/// Build pairs for computing CHT.
fn build_pairs<Header, I>(
	cht_size: Header::Number,
	cht_num: Header::Number,
	hashes: I
) -> ClientResult<Vec<(Vec<u8>, Vec<u8>)>>
	where
		Header: HeaderT,
		I: IntoIterator<Item=ClientResult<Option<Header::Hash>>>,
{
	let start_num = start_number(cht_size, cht_num);
	let mut pairs = Vec::new();
	let mut hash_index = Header::Number::zero();
	for hash in hashes.into_iter() {
		let hash = hash?.ok_or_else(|| ClientError::from(
			ClientError::MissingHashRequiredForCHT
		))?;
		pairs.push((
			encode_cht_key(start_num + hash_index).to_vec(),
			encode_cht_value(hash)
		));
		hash_index += Header::Number::one();
		if hash_index == cht_size {
			break;
		}
	}

	if hash_index == cht_size {
		Ok(pairs)
	} else {
		Err(ClientError::MissingHashRequiredForCHT)
	}
}

/// Get the starting block of a given CHT.
/// CHT 0 includes block 1...SIZE,
/// CHT 1 includes block SIZE + 1 ... 2*SIZE
/// More generally: CHT N includes block (1 + N*SIZE)...((N+1)*SIZE).
/// This is because the genesis hash is assumed to be known
/// and including it would be redundant.
pub fn start_number<N: AtLeast32Bit>(cht_size: N, cht_num: N) -> N {
	(cht_num * cht_size) + N::one()
}

/// Get the ending block of a given CHT.
pub fn end_number<N: AtLeast32Bit>(cht_size: N, cht_num: N) -> N {
	(cht_num + N::one()) * cht_size
}

/// Convert a block number to a CHT number.
/// Returns `None` for `block_num` == 0, `Some` otherwise.
pub fn block_to_cht_number<N: AtLeast32Bit>(cht_size: N, block_num: N) -> Option<N> {
	if block_num == N::zero() {
		None
	} else {
		Some((block_num - N::one()) / cht_size)
	}
}

/// Convert header number into CHT key.
pub fn encode_cht_key<N: Encode>(number: N) -> Vec<u8> {
	number.encode()
}

/// Convert header hash into CHT value.
fn encode_cht_value<Hash: AsRef<[u8]>>(hash: Hash) -> Vec<u8> {
	hash.as_ref().to_vec()
}

/// Convert CHT value into block header hash.
pub fn decode_cht_value(value: &[u8]) -> Option<H256> {
	match value.len() {
		32 => Some(H256::from_slice(&value[0..32])),
		_ => None,
	}

}

#[cfg(test)]
mod tests {
	use super::*;
	use sp_runtime::{generic, traits::BlakeTwo256};

	type Header = generic::Header<u64, BlakeTwo256>;

	#[test]
	fn is_build_required_works() {
		assert_eq!(is_build_required(SIZE, 0u32.into()), None);
		assert_eq!(is_build_required(SIZE, 1u32.into()), None);
		assert_eq!(is_build_required(SIZE, SIZE), None);
		assert_eq!(is_build_required(SIZE, SIZE + 1), None);
		assert_eq!(is_build_required(SIZE, 2 * SIZE), None);
		assert_eq!(is_build_required(SIZE, 2 * SIZE + 1), Some(0));
		assert_eq!(is_build_required(SIZE, 2 * SIZE + 2), None);
		assert_eq!(is_build_required(SIZE, 3 * SIZE), None);
		assert_eq!(is_build_required(SIZE, 3 * SIZE + 1), Some(1));
		assert_eq!(is_build_required(SIZE, 3 * SIZE + 2), None);
	}

	#[test]
	fn max_cht_number_works() {
		assert_eq!(max_cht_number(SIZE, 0u32.into()), None);
		assert_eq!(max_cht_number(SIZE, 1u32.into()), None);
		assert_eq!(max_cht_number(SIZE, SIZE), None);
		assert_eq!(max_cht_number(SIZE, SIZE + 1), None);
		assert_eq!(max_cht_number(SIZE, 2 * SIZE), None);
		assert_eq!(max_cht_number(SIZE, 2 * SIZE + 1), Some(0));
		assert_eq!(max_cht_number(SIZE, 2 * SIZE + 2), Some(0));
		assert_eq!(max_cht_number(SIZE, 3 * SIZE), Some(0));
		assert_eq!(max_cht_number(SIZE, 3 * SIZE + 1), Some(1));
		assert_eq!(max_cht_number(SIZE, 3 * SIZE + 2), Some(1));
	}

	#[test]
	fn start_number_works() {
		assert_eq!(start_number(SIZE, 0u32), 1u32);
		assert_eq!(start_number(SIZE, 1u32), SIZE + 1);
		assert_eq!(start_number(SIZE, 2u32), SIZE + SIZE + 1);
	}

	#[test]
	fn end_number_works() {
		assert_eq!(end_number(SIZE, 0u32), SIZE);
		assert_eq!(end_number(SIZE, 1u32), SIZE + SIZE);
		assert_eq!(end_number(SIZE, 2u32), SIZE + SIZE + SIZE);
	}

	#[test]
	fn build_pairs_fails_when_no_enough_blocks() {
		assert!(build_pairs::<Header, _>(SIZE as _, 0,
			::std::iter::repeat_with(|| Ok(Some(H256::from_low_u64_be(1)))).take(SIZE as usize / 2)).is_err());
	}

	#[test]
	fn build_pairs_fails_when_missing_block() {
		assert!(build_pairs::<Header, _>(
			SIZE as _,
			0,
			::std::iter::repeat_with(|| Ok(Some(H256::from_low_u64_be(1))))
				.take(SIZE as usize / 2)
				.chain(::std::iter::once(Ok(None)))
				.chain(::std::iter::repeat_with(|| Ok(Some(H256::from_low_u64_be(2))))
					.take(SIZE as usize / 2 - 1))
		).is_err());
	}

	#[test]
	fn compute_root_works() {
		assert!(compute_root::<Header, BlakeTwo256, _>(
			SIZE as _,
			42,
			::std::iter::repeat_with(|| Ok(Some(H256::from_low_u64_be(1))))
				.take(SIZE as usize)
		).is_ok());
	}

	#[test]
	#[should_panic]
	fn build_proof_panics_when_querying_wrong_block() {
		assert!(build_proof::<Header, BlakeTwo256, _, _>(
			SIZE as _,
			0,
			vec![(SIZE * 1000) as u64],
			::std::iter::repeat_with(|| Ok(Some(H256::from_low_u64_be(1))))
				.take(SIZE as usize)
		).is_err());
	}

	#[test]
	fn build_proof_works() {
		assert!(build_proof::<Header, BlakeTwo256, _, _>(
			SIZE as _,
			0,
			vec![(SIZE / 2) as u64],
			::std::iter::repeat_with(|| Ok(Some(H256::from_low_u64_be(1))))
				.take(SIZE as usize)
		).is_ok());
	}

	#[test]
	#[should_panic]
	fn for_each_cht_group_panics() {
		let cht_size = SIZE as u64;
		let _ = for_each_cht_group::<Header, _, _, _>(
			cht_size,
			vec![cht_size * 5, cht_size * 2],
			|_, _, _| Ok(()),
			(),
		);
	}

	#[test]
	fn for_each_cht_group_works() {
		let cht_size = SIZE as u64;
		let _ = for_each_cht_group::<Header, _, _, _>(
			cht_size,
			vec![
				cht_size * 2 + 1, cht_size * 2 + 2, cht_size * 2 + 5,
				cht_size * 4 + 1, cht_size * 4 + 7,
				cht_size * 6 + 1
			], |_, cht_num, blocks| {
				match cht_num {
					2 => assert_eq!(blocks, vec![cht_size * 2 + 1, cht_size * 2 + 2, cht_size * 2 + 5]),
					4 => assert_eq!(blocks, vec![cht_size * 4 + 1, cht_size * 4 + 7]),
					6 => assert_eq!(blocks, vec![cht_size * 6 + 1]),
					_ => unreachable!(),
				}

				Ok(())
			}, ()
		);
	}
}