use std::collections::{HashMap, HashSet};
use std::ptr;
use std::sync::Arc;
use parking_lot::RwLock;
use sp_core::{
storage::well_known_keys, offchain::storage::InMemOffchainStorage as OffchainStorage,
};
use sp_runtime::generic::BlockId;
use sp_runtime::traits::{Block as BlockT, Header as HeaderT, Zero, NumberFor, HashFor};
use sp_runtime::{Justification, Storage};
use sp_state_machine::{
ChangesTrieTransaction, InMemoryBackend, Backend as StateBackend, StorageCollection,
ChildStorageCollection,
};
use sp_blockchain::{CachedHeaderMetadata, HeaderMetadata};
use crate::{
backend::{self, NewBlockState, ProvideChtRoots},
blockchain::{
self, BlockStatus, HeaderBackend, well_known_cache_keys::Id as CacheKeyId
},
UsageInfo,
light,
leaves::LeafSet,
};
struct PendingBlock<B: BlockT> {
block: StoredBlock<B>,
state: NewBlockState,
}
#[derive(PartialEq, Eq, Clone)]
enum StoredBlock<B: BlockT> {
Header(B::Header, Option<Justification>),
Full(B, Option<Justification>),
}
impl<B: BlockT> StoredBlock<B> {
fn new(header: B::Header, body: Option<Vec<B::Extrinsic>>, just: Option<Justification>) -> Self {
match body {
Some(body) => StoredBlock::Full(B::new(header, body), just),
None => StoredBlock::Header(header, just),
}
}
fn header(&self) -> &B::Header {
match *self {
StoredBlock::Header(ref h, _) => h,
StoredBlock::Full(ref b, _) => b.header(),
}
}
fn justification(&self) -> Option<&Justification> {
match *self {
StoredBlock::Header(_, ref j) | StoredBlock::Full(_, ref j) => j.as_ref()
}
}
fn extrinsics(&self) -> Option<&[B::Extrinsic]> {
match *self {
StoredBlock::Header(_, _) => None,
StoredBlock::Full(ref b, _) => Some(b.extrinsics()),
}
}
fn into_inner(self) -> (B::Header, Option<Vec<B::Extrinsic>>, Option<Justification>) {
match self {
StoredBlock::Header(header, just) => (header, None, just),
StoredBlock::Full(block, just) => {
let (header, body) = block.deconstruct();
(header, Some(body), just)
}
}
}
}
#[derive(Clone)]
struct BlockchainStorage<Block: BlockT> {
blocks: HashMap<Block::Hash, StoredBlock<Block>>,
hashes: HashMap<NumberFor<Block>, Block::Hash>,
best_hash: Block::Hash,
best_number: NumberFor<Block>,
finalized_hash: Block::Hash,
finalized_number: NumberFor<Block>,
genesis_hash: Block::Hash,
header_cht_roots: HashMap<NumberFor<Block>, Block::Hash>,
changes_trie_cht_roots: HashMap<NumberFor<Block>, Block::Hash>,
leaves: LeafSet<Block::Hash, NumberFor<Block>>,
aux: HashMap<Vec<u8>, Vec<u8>>,
}
pub struct Blockchain<Block: BlockT> {
storage: Arc<RwLock<BlockchainStorage<Block>>>,
}
impl<Block: BlockT> Default for Blockchain<Block> {
fn default() -> Self {
Self::new()
}
}
impl<Block: BlockT + Clone> Clone for Blockchain<Block> {
fn clone(&self) -> Self {
let storage = Arc::new(RwLock::new(self.storage.read().clone()));
Blockchain {
storage,
}
}
}
impl<Block: BlockT> Blockchain<Block> {
pub fn id(&self, id: BlockId<Block>) -> Option<Block::Hash> {
match id {
BlockId::Hash(h) => Some(h),
BlockId::Number(n) => self.storage.read().hashes.get(&n).cloned(),
}
}
pub fn new() -> Blockchain<Block> {
let storage = Arc::new(RwLock::new(
BlockchainStorage {
blocks: HashMap::new(),
hashes: HashMap::new(),
best_hash: Default::default(),
best_number: Zero::zero(),
finalized_hash: Default::default(),
finalized_number: Zero::zero(),
genesis_hash: Default::default(),
header_cht_roots: HashMap::new(),
changes_trie_cht_roots: HashMap::new(),
leaves: LeafSet::new(),
aux: HashMap::new(),
}));
Blockchain {
storage,
}
}
pub fn insert(
&self,
hash: Block::Hash,
header: <Block as BlockT>::Header,
justification: Option<Justification>,
body: Option<Vec<<Block as BlockT>::Extrinsic>>,
new_state: NewBlockState,
) -> sp_blockchain::Result<()> {
let number = header.number().clone();
if new_state.is_best() {
self.apply_head(&header)?;
}
{
let mut storage = self.storage.write();
storage.leaves.import(hash.clone(), number.clone(), header.parent_hash().clone());
storage.blocks.insert(hash.clone(), StoredBlock::new(header, body, justification));
if let NewBlockState::Final = new_state {
storage.finalized_hash = hash;
storage.finalized_number = number.clone();
}
if number == Zero::zero() {
storage.genesis_hash = hash;
}
}
Ok(())
}
pub fn blocks_count(&self) -> usize {
self.storage.read().blocks.len()
}
pub fn equals_to(&self, other: &Self) -> bool {
if ptr::eq(self, other) {
return true;
}
self.canon_equals_to(other) && self.storage.read().blocks == other.storage.read().blocks
}
pub fn canon_equals_to(&self, other: &Self) -> bool {
if ptr::eq(self, other) {
return true;
}
let this = self.storage.read();
let other = other.storage.read();
this.hashes == other.hashes
&& this.best_hash == other.best_hash
&& this.best_number == other.best_number
&& this.genesis_hash == other.genesis_hash
}
pub fn insert_cht_root(&self, block: NumberFor<Block>, cht_root: Block::Hash) {
self.storage.write().header_cht_roots.insert(block, cht_root);
}
pub fn set_head(&self, id: BlockId<Block>) -> sp_blockchain::Result<()> {
let header = match self.header(id)? {
Some(h) => h,
None => return Err(sp_blockchain::Error::UnknownBlock(format!("{}", id))),
};
self.apply_head(&header)
}
fn apply_head(&self, header: &<Block as BlockT>::Header) -> sp_blockchain::Result<()> {
let hash = header.hash();
let number = header.number();
let best_tree_route = {
let best_hash = self.storage.read().best_hash;
if &best_hash == header.parent_hash() {
None
} else {
let route = sp_blockchain::tree_route(self, best_hash, *header.parent_hash())?;
Some(route)
}
};
let mut storage = self.storage.write();
if let Some(tree_route) = best_tree_route {
let enacted = tree_route.enacted();
for entry in enacted {
storage.hashes.insert(entry.number, entry.hash);
}
for entry in tree_route.retracted().iter().skip(enacted.len()) {
storage.hashes.remove(&entry.number);
}
}
storage.best_hash = hash.clone();
storage.best_number = number.clone();
storage.hashes.insert(number.clone(), hash.clone());
Ok(())
}
fn finalize_header(&self, id: BlockId<Block>, justification: Option<Justification>) -> sp_blockchain::Result<()> {
let hash = match self.header(id)? {
Some(h) => h.hash(),
None => return Err(sp_blockchain::Error::UnknownBlock(format!("{}", id))),
};
let mut storage = self.storage.write();
storage.finalized_hash = hash;
if justification.is_some() {
let block = storage.blocks.get_mut(&hash)
.expect("hash was fetched from a block in the db; qed");
let block_justification = match block {
StoredBlock::Header(_, ref mut j) | StoredBlock::Full(_, ref mut j) => j
};
*block_justification = justification;
}
Ok(())
}
fn write_aux(&self, ops: Vec<(Vec<u8>, Option<Vec<u8>>)>) {
let mut storage = self.storage.write();
for (k, v) in ops {
match v {
Some(v) => storage.aux.insert(k, v),
None => storage.aux.remove(&k),
};
}
}
}
impl<Block: BlockT> HeaderBackend<Block> for Blockchain<Block> {
fn header(&self, id: BlockId<Block>) -> sp_blockchain::Result<Option<<Block as BlockT>::Header>> {
Ok(self.id(id).and_then(|hash| {
self.storage.read().blocks.get(&hash).map(|b| b.header().clone())
}))
}
fn info(&self) -> blockchain::Info<Block> {
let storage = self.storage.read();
blockchain::Info {
best_hash: storage.best_hash,
best_number: storage.best_number,
genesis_hash: storage.genesis_hash,
finalized_hash: storage.finalized_hash,
finalized_number: storage.finalized_number,
number_leaves: storage.leaves.count()
}
}
fn status(&self, id: BlockId<Block>) -> sp_blockchain::Result<BlockStatus> {
match self.id(id).map_or(false, |hash| self.storage.read().blocks.contains_key(&hash)) {
true => Ok(BlockStatus::InChain),
false => Ok(BlockStatus::Unknown),
}
}
fn number(&self, hash: Block::Hash) -> sp_blockchain::Result<Option<NumberFor<Block>>> {
Ok(self.storage.read().blocks.get(&hash).map(|b| *b.header().number()))
}
fn hash(&self, number: <<Block as BlockT>::Header as HeaderT>::Number) -> sp_blockchain::Result<Option<Block::Hash>> {
Ok(self.id(BlockId::Number(number)))
}
}
impl<Block: BlockT> HeaderMetadata<Block> for Blockchain<Block> {
type Error = sp_blockchain::Error;
fn header_metadata(&self, hash: Block::Hash) -> Result<CachedHeaderMetadata<Block>, Self::Error> {
self.header(BlockId::hash(hash))?.map(|header| CachedHeaderMetadata::from(&header))
.ok_or_else(|| sp_blockchain::Error::UnknownBlock(format!("header not found: {}", hash)))
}
fn insert_header_metadata(&self, _hash: Block::Hash, _metadata: CachedHeaderMetadata<Block>) {
}
fn remove_header_metadata(&self, _hash: Block::Hash) {
}
}
impl<Block: BlockT> blockchain::Backend<Block> for Blockchain<Block> {
fn body(&self, id: BlockId<Block>) -> sp_blockchain::Result<Option<Vec<<Block as BlockT>::Extrinsic>>> {
Ok(self.id(id).and_then(|hash| {
self.storage.read().blocks.get(&hash)
.and_then(|b| b.extrinsics().map(|x| x.to_vec()))
}))
}
fn justification(&self, id: BlockId<Block>) -> sp_blockchain::Result<Option<Justification>> {
Ok(self.id(id).and_then(|hash| self.storage.read().blocks.get(&hash).and_then(|b|
b.justification().map(|x| x.clone()))
))
}
fn last_finalized(&self) -> sp_blockchain::Result<Block::Hash> {
Ok(self.storage.read().finalized_hash.clone())
}
fn cache(&self) -> Option<Arc<dyn blockchain::Cache<Block>>> {
None
}
fn leaves(&self) -> sp_blockchain::Result<Vec<Block::Hash>> {
Ok(self.storage.read().leaves.hashes())
}
fn children(&self, _parent_hash: Block::Hash) -> sp_blockchain::Result<Vec<Block::Hash>> {
unimplemented!()
}
}
impl<Block: BlockT> blockchain::ProvideCache<Block> for Blockchain<Block> {
fn cache(&self) -> Option<Arc<dyn blockchain::Cache<Block>>> {
None
}
}
impl<Block: BlockT> backend::AuxStore for Blockchain<Block> {
fn insert_aux<
'a,
'b: 'a,
'c: 'a,
I: IntoIterator<Item=&'a(&'c [u8], &'c [u8])>,
D: IntoIterator<Item=&'a &'b [u8]>,
>(&self, insert: I, delete: D) -> sp_blockchain::Result<()> {
let mut storage = self.storage.write();
for (k, v) in insert {
storage.aux.insert(k.to_vec(), v.to_vec());
}
for k in delete {
storage.aux.remove(*k);
}
Ok(())
}
fn get_aux(&self, key: &[u8]) -> sp_blockchain::Result<Option<Vec<u8>>> {
Ok(self.storage.read().aux.get(key).cloned())
}
}
impl<Block: BlockT> light::Storage<Block> for Blockchain<Block>
where
Block::Hash: From<[u8; 32]>,
{
fn import_header(
&self,
header: Block::Header,
_cache: HashMap<CacheKeyId, Vec<u8>>,
state: NewBlockState,
aux_ops: Vec<(Vec<u8>, Option<Vec<u8>>)>,
) -> sp_blockchain::Result<()> {
let hash = header.hash();
self.insert(hash, header, None, None, state)?;
self.write_aux(aux_ops);
Ok(())
}
fn set_head(&self, id: BlockId<Block>) -> sp_blockchain::Result<()> {
Blockchain::set_head(self, id)
}
fn last_finalized(&self) -> sp_blockchain::Result<Block::Hash> {
Ok(self.storage.read().finalized_hash.clone())
}
fn finalize_header(&self, id: BlockId<Block>) -> sp_blockchain::Result<()> {
Blockchain::finalize_header(self, id, None)
}
fn cache(&self) -> Option<Arc<dyn blockchain::Cache<Block>>> {
None
}
fn usage_info(&self) -> Option<UsageInfo> {
None
}
}
impl<Block: BlockT> ProvideChtRoots<Block> for Blockchain<Block> {
fn header_cht_root(
&self,
_cht_size: NumberFor<Block>,
block: NumberFor<Block>,
) -> sp_blockchain::Result<Option<Block::Hash>> {
self.storage.read().header_cht_roots.get(&block).cloned()
.ok_or_else(|| sp_blockchain::Error::Backend(format!("Header CHT for block {} not exists", block)))
.map(Some)
}
fn changes_trie_cht_root(
&self,
_cht_size: NumberFor<Block>,
block: NumberFor<Block>,
) -> sp_blockchain::Result<Option<Block::Hash>> {
self.storage.read().changes_trie_cht_roots.get(&block).cloned()
.ok_or_else(|| sp_blockchain::Error::Backend(format!("Changes trie CHT for block {} not exists", block)))
.map(Some)
}
}
pub struct BlockImportOperation<Block: BlockT> {
pending_block: Option<PendingBlock<Block>>,
pending_cache: HashMap<CacheKeyId, Vec<u8>>,
old_state: InMemoryBackend<HashFor<Block>>,
new_state: Option<<InMemoryBackend<HashFor<Block>> as StateBackend<HashFor<Block>>>::Transaction>,
aux: Vec<(Vec<u8>, Option<Vec<u8>>)>,
finalized_blocks: Vec<(BlockId<Block>, Option<Justification>)>,
set_head: Option<BlockId<Block>>,
}
impl<Block: BlockT> backend::BlockImportOperation<Block> for BlockImportOperation<Block> where
Block::Hash: Ord,
{
type State = InMemoryBackend<HashFor<Block>>;
fn state(&self) -> sp_blockchain::Result<Option<&Self::State>> {
Ok(Some(&self.old_state))
}
fn set_block_data(
&mut self,
header: <Block as BlockT>::Header,
body: Option<Vec<<Block as BlockT>::Extrinsic>>,
justification: Option<Justification>,
state: NewBlockState,
) -> sp_blockchain::Result<()> {
assert!(self.pending_block.is_none(), "Only one block per operation is allowed");
self.pending_block = Some(PendingBlock {
block: StoredBlock::new(header, body, justification),
state,
});
Ok(())
}
fn update_cache(&mut self, cache: HashMap<CacheKeyId, Vec<u8>>) {
self.pending_cache = cache;
}
fn update_db_storage(
&mut self,
update: <InMemoryBackend<HashFor<Block>> as StateBackend<HashFor<Block>>>::Transaction,
) -> sp_blockchain::Result<()> {
self.new_state = Some(update);
Ok(())
}
fn update_changes_trie(
&mut self,
_update: ChangesTrieTransaction<HashFor<Block>, NumberFor<Block>>,
) -> sp_blockchain::Result<()> {
Ok(())
}
fn reset_storage(&mut self, storage: Storage) -> sp_blockchain::Result<Block::Hash> {
check_genesis_storage(&storage)?;
let child_delta = storage.children_default.iter()
.map(|(_storage_key, child_content)|
(
&child_content.child_info,
child_content.data.iter().map(|(k, v)| (k.as_ref(), Some(v.as_ref())))
)
);
let (root, transaction) = self.old_state.full_storage_root(
storage.top.iter().map(|(k, v)| (k.as_ref(), Some(v.as_ref()))),
child_delta,
);
self.new_state = Some(transaction);
Ok(root)
}
fn insert_aux<I>(&mut self, ops: I) -> sp_blockchain::Result<()>
where I: IntoIterator<Item=(Vec<u8>, Option<Vec<u8>>)>
{
self.aux.append(&mut ops.into_iter().collect());
Ok(())
}
fn update_storage(
&mut self,
_update: StorageCollection,
_child_update: ChildStorageCollection,
) -> sp_blockchain::Result<()> {
Ok(())
}
fn mark_finalized(
&mut self,
block: BlockId<Block>,
justification: Option<Justification>,
) -> sp_blockchain::Result<()> {
self.finalized_blocks.push((block, justification));
Ok(())
}
fn mark_head(&mut self, block: BlockId<Block>) -> sp_blockchain::Result<()> {
assert!(self.pending_block.is_none(), "Only one set block per operation is allowed");
self.set_head = Some(block);
Ok(())
}
}
pub struct Backend<Block: BlockT> where Block::Hash: Ord {
states: RwLock<HashMap<Block::Hash, InMemoryBackend<HashFor<Block>>>>,
blockchain: Blockchain<Block>,
import_lock: RwLock<()>,
}
impl<Block: BlockT> Backend<Block> where Block::Hash: Ord {
pub fn new() -> Self {
Backend {
states: RwLock::new(HashMap::new()),
blockchain: Blockchain::new(),
import_lock: Default::default(),
}
}
}
impl<Block: BlockT> backend::AuxStore for Backend<Block> where Block::Hash: Ord {
fn insert_aux<
'a,
'b: 'a,
'c: 'a,
I: IntoIterator<Item=&'a(&'c [u8], &'c [u8])>,
D: IntoIterator<Item=&'a &'b [u8]>,
>(&self, insert: I, delete: D) -> sp_blockchain::Result<()> {
self.blockchain.insert_aux(insert, delete)
}
fn get_aux(&self, key: &[u8]) -> sp_blockchain::Result<Option<Vec<u8>>> {
self.blockchain.get_aux(key)
}
}
impl<Block: BlockT> backend::Backend<Block> for Backend<Block> where Block::Hash: Ord {
type BlockImportOperation = BlockImportOperation<Block>;
type Blockchain = Blockchain<Block>;
type State = InMemoryBackend<HashFor<Block>>;
type OffchainStorage = OffchainStorage;
fn begin_operation(&self) -> sp_blockchain::Result<Self::BlockImportOperation> {
let old_state = self.state_at(BlockId::Hash(Default::default()))?;
Ok(BlockImportOperation {
pending_block: None,
pending_cache: Default::default(),
old_state,
new_state: None,
aux: Default::default(),
finalized_blocks: Default::default(),
set_head: None,
})
}
fn begin_state_operation(
&self,
operation: &mut Self::BlockImportOperation,
block: BlockId<Block>,
) -> sp_blockchain::Result<()> {
operation.old_state = self.state_at(block)?;
Ok(())
}
fn commit_operation(
&self,
operation: Self::BlockImportOperation,
) -> sp_blockchain::Result<()> {
if !operation.finalized_blocks.is_empty() {
for (block, justification) in operation.finalized_blocks {
self.blockchain.finalize_header(block, justification)?;
}
}
if let Some(pending_block) = operation.pending_block {
let old_state = &operation.old_state;
let (header, body, justification) = pending_block.block.into_inner();
let hash = header.hash();
let new_state = match operation.new_state {
Some(state) => old_state.update_backend(*header.state_root(), state),
None => old_state.clone(),
};
self.states.write().insert(hash, new_state);
self.blockchain.insert(hash, header, justification, body, pending_block.state)?;
}
if !operation.aux.is_empty() {
self.blockchain.write_aux(operation.aux);
}
if let Some(set_head) = operation.set_head {
self.blockchain.set_head(set_head)?;
}
Ok(())
}
fn finalize_block(
&self,
block: BlockId<Block>,
justification: Option<Justification>,
) -> sp_blockchain::Result<()> {
self.blockchain.finalize_header(block, justification)
}
fn blockchain(&self) -> &Self::Blockchain {
&self.blockchain
}
fn usage_info(&self) -> Option<UsageInfo> {
None
}
fn changes_trie_storage(&self) -> Option<&dyn backend::PrunableStateChangesTrieStorage<Block>> {
None
}
fn offchain_storage(&self) -> Option<Self::OffchainStorage> {
None
}
fn state_at(&self, block: BlockId<Block>) -> sp_blockchain::Result<Self::State> {
match block {
BlockId::Hash(h) if h == Default::default() => {
return Ok(Self::State::default());
},
_ => {},
}
match self.blockchain.id(block).and_then(|id| self.states.read().get(&id).cloned()) {
Some(state) => Ok(state),
None => Err(sp_blockchain::Error::UnknownBlock(format!("{}", block))),
}
}
fn revert(
&self,
_n: NumberFor<Block>,
_revert_finalized: bool,
) -> sp_blockchain::Result<(NumberFor<Block>, HashSet<Block::Hash>)> {
Ok((Zero::zero(), HashSet::new()))
}
fn get_import_lock(&self) -> &RwLock<()> {
&self.import_lock
}
}
impl<Block: BlockT> backend::LocalBackend<Block> for Backend<Block> where Block::Hash: Ord {}
impl<Block: BlockT> backend::RemoteBackend<Block> for Backend<Block> where Block::Hash: Ord {
fn is_local_state_available(&self, block: &BlockId<Block>) -> bool {
self.blockchain.expect_block_number_from_id(block)
.map(|num| num.is_zero())
.unwrap_or(false)
}
fn remote_blockchain(&self) -> Arc<dyn light::RemoteBlockchain<Block>> {
unimplemented!()
}
}
pub fn check_genesis_storage(storage: &Storage) -> sp_blockchain::Result<()> {
if storage.top.iter().any(|(k, _)| well_known_keys::is_child_storage_key(k)) {
return Err(sp_blockchain::Error::GenesisInvalid.into());
}
if storage.children_default.keys()
.any(|child_key| !well_known_keys::is_child_storage_key(&child_key)) {
return Err(sp_blockchain::Error::GenesisInvalid.into());
}
Ok(())
}