#[cfg(feature = "std")]
use serde::{Serialize, Deserialize};
use sp_std::{ops, fmt, prelude::*, convert::TryInto};
use codec::{Encode, CompactAs};
use crate::traits::{
SaturatedConversion, UniqueSaturatedInto, Saturating, BaseArithmetic, Bounded, Zero, Unsigned,
};
use sp_debug_derive::RuntimeDebug;
pub type InnerOf<P> = <P as PerThing>::Inner;
pub type UpperOf<P> = <P as PerThing>::Upper;
pub trait PerThing:
Sized + Saturating + Copy + Default + Eq + PartialEq + Ord + PartialOrd + Bounded + fmt::Debug
{
type Inner: BaseArithmetic + Unsigned + Copy + fmt::Debug;
type Upper:
BaseArithmetic + Copy + From<Self::Inner> + TryInto<Self::Inner> +
UniqueSaturatedInto<Self::Inner> + Unsigned + fmt::Debug;
const ACCURACY: Self::Inner;
fn zero() -> Self { Self::from_parts(Self::Inner::zero()) }
fn is_zero(&self) -> bool { self.deconstruct() == Self::Inner::zero() }
fn one() -> Self { Self::from_parts(Self::ACCURACY) }
fn is_one(&self) -> bool { self.deconstruct() == Self::ACCURACY }
fn from_percent(x: Self::Inner) -> Self {
let a = x.min(100.into());
let b = Self::ACCURACY;
let c = rational_mul_correction::<Self::Inner, Self>(b, a, 100.into(), Rounding::Nearest);
Self::from_parts(a / 100.into() * b + c)
}
fn square(self) -> Self {
let p = Self::Upper::from(self.deconstruct());
let q = Self::Upper::from(Self::ACCURACY);
Self::from_rational_approximation(p * p, q * q)
}
fn mul_floor<N>(self, b: N) -> N
where N: Clone + From<Self::Inner> + UniqueSaturatedInto<Self::Inner> + ops::Rem<N, Output=N> +
ops::Div<N, Output=N> + ops::Mul<N, Output=N> + ops::Add<N, Output=N> + Unsigned
{
overflow_prune_mul::<N, Self>(b, self.deconstruct(), Rounding::Down)
}
fn mul_ceil<N>(self, b: N) -> N
where N: Clone + From<Self::Inner> + UniqueSaturatedInto<Self::Inner> + ops::Rem<N, Output=N> +
ops::Div<N, Output=N> + ops::Mul<N, Output=N> + ops::Add<N, Output=N> + Unsigned
{
overflow_prune_mul::<N, Self>(b, self.deconstruct(), Rounding::Up)
}
fn saturating_reciprocal_mul<N>(self, b: N) -> N
where N: Clone + From<Self::Inner> + UniqueSaturatedInto<Self::Inner> + ops::Rem<N, Output=N> +
ops::Div<N, Output=N> + ops::Mul<N, Output=N> + ops::Add<N, Output=N> + Saturating +
Unsigned
{
saturating_reciprocal_mul::<N, Self>(b, self.deconstruct(), Rounding::Nearest)
}
fn saturating_reciprocal_mul_floor<N>(self, b: N) -> N
where N: Clone + From<Self::Inner> + UniqueSaturatedInto<Self::Inner> + ops::Rem<N, Output=N> +
ops::Div<N, Output=N> + ops::Mul<N, Output=N> + ops::Add<N, Output=N> + Saturating +
Unsigned
{
saturating_reciprocal_mul::<N, Self>(b, self.deconstruct(), Rounding::Down)
}
fn saturating_reciprocal_mul_ceil<N>(self, b: N) -> N
where N: Clone + From<Self::Inner> + UniqueSaturatedInto<Self::Inner> + ops::Rem<N, Output=N> +
ops::Div<N, Output=N> + ops::Mul<N, Output=N> + ops::Add<N, Output=N> + Saturating +
Unsigned
{
saturating_reciprocal_mul::<N, Self>(b, self.deconstruct(), Rounding::Up)
}
fn deconstruct(self) -> Self::Inner;
fn from_parts(parts: Self::Inner) -> Self;
#[cfg(feature = "std")]
fn from_fraction(x: f64) -> Self;
fn from_rational_approximation<N>(p: N, q: N) -> Self
where N: Clone + Ord + From<Self::Inner> + TryInto<Self::Inner> + TryInto<Self::Upper> +
ops::Div<N, Output=N> + ops::Rem<N, Output=N> + ops::Add<N, Output=N> + Unsigned;
}
enum Rounding {
Up,
Down,
Nearest,
}
fn saturating_reciprocal_mul<N, P>(
x: N,
part: P::Inner,
rounding: Rounding,
) -> N
where
N: Clone + From<P::Inner> + UniqueSaturatedInto<P::Inner> + ops::Div<N, Output=N> + ops::Mul<N,
Output=N> + ops::Add<N, Output=N> + ops::Rem<N, Output=N> + Saturating + Unsigned,
P: PerThing,
{
let maximum: N = P::ACCURACY.into();
let c = rational_mul_correction::<N, P>(
x.clone(),
P::ACCURACY,
part,
rounding,
);
(x / part.into()).saturating_mul(maximum).saturating_add(c)
}
fn overflow_prune_mul<N, P>(
x: N,
part: P::Inner,
rounding: Rounding,
) -> N
where
N: Clone + From<P::Inner> + UniqueSaturatedInto<P::Inner> + ops::Div<N, Output=N> + ops::Mul<N,
Output=N> + ops::Add<N, Output=N> + ops::Rem<N, Output=N> + Unsigned,
P: PerThing,
{
let maximum: N = P::ACCURACY.into();
let part_n: N = part.into();
let c = rational_mul_correction::<N, P>(
x.clone(),
part,
P::ACCURACY,
rounding,
);
(x / maximum) * part_n + c
}
fn rational_mul_correction<N, P>(
x: N,
numer: P::Inner,
denom: P::Inner,
rounding: Rounding,
) -> N
where
N: From<P::Inner> + UniqueSaturatedInto<P::Inner> + ops::Div<N, Output=N> + ops::Mul<N,
Output=N> + ops::Add<N, Output=N> + ops::Rem<N, Output=N> + Unsigned,
P: PerThing,
{
let numer_upper = P::Upper::from(numer);
let denom_n = N::from(denom);
let denom_upper = P::Upper::from(denom);
let rem = x.rem(denom_n);
let rem_inner = rem.saturated_into::<P::Inner>();
let rem_mul_upper = P::Upper::from(rem_inner) * numer_upper;
let mut rem_mul_div_inner = (rem_mul_upper / denom_upper).saturated_into::<P::Inner>();
match rounding {
Rounding::Down => {},
Rounding::Up => if rem_mul_upper % denom_upper > 0.into() {
rem_mul_div_inner = rem_mul_div_inner + 1.into();
},
Rounding::Nearest => if rem_mul_upper % denom_upper > denom_upper / 2.into() {
rem_mul_div_inner = rem_mul_div_inner + 1.into();
},
}
rem_mul_div_inner.into()
}
macro_rules! implement_per_thing {
(
$name:ident,
$test_mod:ident,
[$($test_units:tt),+],
$max:tt,
$type:ty,
$upper_type:ty,
$title:expr $(,)?
) => {
#[doc = $title]
#[cfg_attr(feature = "std", derive(Serialize, Deserialize))]
#[derive(Encode, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, RuntimeDebug)]
pub struct $name($type);
impl CompactAs for $name {
type As = $type;
fn encode_as(&self) -> &Self::As {
&self.0
}
fn decode_from(x: Self::As) -> Self {
Self::from_parts(x)
}
}
impl From<codec::Compact<$name>> for $name {
fn from(x: codec::Compact<$name>) -> $name {
x.0
}
}
impl PerThing for $name {
type Inner = $type;
type Upper = $upper_type;
const ACCURACY: Self::Inner = $max;
fn deconstruct(self) -> Self::Inner { self.0 }
fn from_parts(parts: Self::Inner) -> Self { Self(parts.min($max)) }
#[cfg(feature = "std")]
fn from_fraction(x: f64) -> Self {
Self::from_parts((x.max(0.).min(1.) * $max as f64) as Self::Inner)
}
fn from_rational_approximation<N>(p: N, q: N) -> Self
where N: Clone + Ord + From<Self::Inner> + TryInto<Self::Inner> + TryInto<Self::Upper>
+ ops::Div<N, Output=N> + ops::Rem<N, Output=N> + ops::Add<N, Output=N> + Unsigned
{
let div_ceil = |x: N, f: N| -> N {
let mut o = x.clone() / f.clone();
let r = x.rem(f.clone());
if r > N::from(0) {
o = o + N::from(1);
}
o
};
let q: N = q.max((1 as Self::Inner).into());
let p: N = p.min(q.clone());
let factor: N = div_ceil(q.clone(), $max.into()).max((1 as Self::Inner).into());
let q_reduce: $type = (q.clone() / factor.clone())
.try_into()
.map_err(|_| "Failed to convert")
.expect(
"q / ceil(q/$max) < $max. Macro prevents any type being created that \
does not satisfy this; qed"
);
let p_reduce: $type = (p / factor)
.try_into()
.map_err(|_| "Failed to convert")
.expect(
"q / ceil(q/$max) < $max. Macro prevents any type being created that \
does not satisfy this; qed"
);
let part =
p_reduce as $upper_type
* <$upper_type>::from($max)
/ q_reduce as $upper_type;
$name(part as Self::Inner)
}
}
impl $name {
#[allow(unused_comparisons)]
pub const fn from_parts(parts: $type) -> Self {
Self([parts, $max][(parts > $max) as usize])
}
pub const fn from_percent(x: $type) -> Self {
Self(([x, 100][(x > 100) as usize] as $upper_type * $max as $upper_type / 100) as $type)
}
pub const fn one() -> Self {
Self::from_parts($max)
}
pub fn is_one(&self) -> bool {
PerThing::is_one(self)
}
pub const fn zero() -> Self {
Self::from_parts(0)
}
pub fn is_zero(&self) -> bool {
PerThing::is_zero(self)
}
pub const fn deconstruct(self) -> $type {
self.0
}
pub fn square(self) -> Self {
PerThing::square(self)
}
#[cfg(feature = "std")]
pub fn from_fraction(x: f64) -> Self {
<Self as PerThing>::from_fraction(x)
}
pub fn from_rational_approximation<N>(p: N, q: N) -> Self
where N: Clone + Ord + From<$type> + TryInto<$type> +
TryInto<$upper_type> + ops::Div<N, Output=N> + ops::Rem<N, Output=N> +
ops::Add<N, Output=N> + Unsigned
{
<Self as PerThing>::from_rational_approximation(p, q)
}
pub fn mul_floor<N>(self, b: N) -> N
where N: Clone + From<$type> + UniqueSaturatedInto<$type> +
ops::Rem<N, Output=N> + ops::Div<N, Output=N> + ops::Mul<N, Output=N> +
ops::Add<N, Output=N> + Unsigned
{
PerThing::mul_floor(self, b)
}
pub fn mul_ceil<N>(self, b: N) -> N
where N: Clone + From<$type> + UniqueSaturatedInto<$type> +
ops::Rem<N, Output=N> + ops::Div<N, Output=N> + ops::Mul<N, Output=N> +
ops::Add<N, Output=N> + Unsigned
{
PerThing::mul_ceil(self, b)
}
pub fn saturating_reciprocal_mul<N>(self, b: N) -> N
where N: Clone + From<$type> + UniqueSaturatedInto<$type> + ops::Rem<N, Output=N> +
ops::Div<N, Output=N> + ops::Mul<N, Output=N> + ops::Add<N, Output=N> +
Saturating + Unsigned
{
PerThing::saturating_reciprocal_mul(self, b)
}
pub fn saturating_reciprocal_mul_floor<N>(self, b: N) -> N
where N: Clone + From<$type> + UniqueSaturatedInto<$type> + ops::Rem<N, Output=N> +
ops::Div<N, Output=N> + ops::Mul<N, Output=N> + ops::Add<N, Output=N> +
Saturating + Unsigned
{
PerThing::saturating_reciprocal_mul_floor(self, b)
}
pub fn saturating_reciprocal_mul_ceil<N>(self, b: N) -> N
where N: Clone + From<$type> + UniqueSaturatedInto<$type> + ops::Rem<N, Output=N> +
ops::Div<N, Output=N> + ops::Mul<N, Output=N> + ops::Add<N, Output=N> +
Saturating + Unsigned
{
PerThing::saturating_reciprocal_mul_ceil(self, b)
}
}
impl Saturating for $name {
fn saturating_add(self, rhs: Self) -> Self {
Self::from_parts(self.0.saturating_add(rhs.0))
}
fn saturating_sub(self, rhs: Self) -> Self {
Self::from_parts(self.0.saturating_sub(rhs.0))
}
fn saturating_mul(self, rhs: Self) -> Self {
let a = self.0 as $upper_type;
let b = rhs.0 as $upper_type;
let m = <$upper_type>::from($max);
let parts = a * b / m;
Self::from_parts(parts as $type)
}
fn saturating_pow(self, exp: usize) -> Self {
if self.is_zero() || self.is_one() {
self
} else {
let p = <$name as PerThing>::Upper::from(self.deconstruct());
let q = <$name as PerThing>::Upper::from(Self::ACCURACY);
let mut s = Self::one();
for _ in 0..exp {
if s.is_zero() {
break;
} else {
s = Self::from_rational_approximation(
<$name as PerThing>::Upper::from(s.deconstruct()) * p,
q * q,
);
}
}
s
}
}
}
impl codec::Decode for $name {
fn decode<I: codec::Input>(input: &mut I) -> Result<Self, codec::Error> {
let inner = <$type as codec::Decode>::decode(input)?;
if inner <= <Self as PerThing>::ACCURACY {
Ok(Self(inner))
} else {
Err("Value is greater than allowed maximum!".into())
}
}
}
impl crate::traits::Bounded for $name {
fn min_value() -> Self {
<Self as PerThing>::zero()
}
fn max_value() -> Self {
<Self as PerThing>::one()
}
}
impl ops::Div for $name {
type Output = Self;
fn div(self, rhs: Self) -> Self::Output {
let p = self.0;
let q = rhs.0;
Self::from_rational_approximation(p, q)
}
}
impl Default for $name {
fn default() -> Self {
<Self as PerThing>::zero()
}
}
impl<N> ops::Mul<N> for $name
where
N: Clone + From<$type> + UniqueSaturatedInto<$type> + ops::Rem<N, Output=N>
+ ops::Div<N, Output=N> + ops::Mul<N, Output=N> + ops::Add<N, Output=N> + Unsigned,
{
type Output = N;
fn mul(self, b: N) -> Self::Output {
overflow_prune_mul::<N, Self>(b, self.deconstruct(), Rounding::Nearest)
}
}
#[cfg(test)]
mod $test_mod {
use codec::{Encode, Decode};
use super::{$name, Saturating, RuntimeDebug, PerThing};
use crate::traits::Zero;
#[test]
fn macro_expanded_correctly() {
assert!(2 * ($max as $upper_type) < <$upper_type>::max_value());
assert!(<$upper_type>::from($max) < <$upper_type>::max_value());
assert!((<$type>::max_value() as $upper_type) <= <$upper_type>::max_value());
assert!(<$upper_type>::from($max).checked_mul($max.into()).is_some());
assert!(<$upper_type>::from($max) * <$upper_type>::from($max) < <$upper_type>::max_value());
}
#[derive(Encode, Decode, PartialEq, Eq, RuntimeDebug)]
struct WithCompact<T: codec::HasCompact> {
data: T,
}
#[test]
fn has_compact() {
let data = WithCompact { data: $name(1) };
let encoded = data.encode();
assert_eq!(data, WithCompact::<$name>::decode(&mut &encoded[..]).unwrap());
}
#[test]
fn compact_encoding() {
let tests = [
(0 as $type, 1usize),
(1 as $type, 1usize),
(63, 1),
(64, 2),
(65, 2),
];
for &(n, l) in &tests {
let compact: codec::Compact<$name> = $name(n).into();
let encoded = compact.encode();
assert_eq!(encoded.len(), l);
let decoded = <codec::Compact<$name>>::decode(&mut & encoded[..])
.unwrap();
let per_thingy: $name = decoded.into();
assert_eq!(per_thingy, $name(n));
}
}
#[test]
fn fail_on_invalid_encoded_value() {
let value = <$upper_type>::from($max) * 2;
let casted = value as $type;
let encoded = casted.encode();
if <$upper_type>::from(casted) == value {
assert_eq!(
$name::decode(&mut &encoded[..]),
Err("Value is greater than allowed maximum!".into()),
);
}
}
#[test]
fn per_thing_api_works() {
assert_eq!($name::zero(), $name::from_parts(Zero::zero()));
assert_eq!($name::one(), $name::from_parts($max));
assert_eq!($name::ACCURACY, $max);
assert_eq!($name::from_percent(0), $name::from_parts(Zero::zero()));
assert_eq!($name::from_percent(10), $name::from_parts($max / 10));
assert_eq!($name::from_percent(100), $name::from_parts($max));
assert_eq!($name::from_percent(200), $name::from_parts($max));
assert_eq!($name::from_fraction(0.0), $name::from_parts(Zero::zero()));
assert_eq!($name::from_fraction(0.1), $name::from_parts($max / 10));
assert_eq!($name::from_fraction(1.0), $name::from_parts($max));
assert_eq!($name::from_fraction(2.0), $name::from_parts($max));
assert_eq!($name::from_fraction(-1.0), $name::from_parts(Zero::zero()));
}
macro_rules! u256ify {
($val:expr) => {
Into::<U256>::into($val)
};
}
macro_rules! per_thing_mul_test {
($num_type:tt) => {
assert_eq!(
$name::from_fraction(1.0) * $num_type::max_value(),
$num_type::max_value()
);
if $max % 100 == 0 {
assert_eq_error_rate!(
$name::from_percent(99) * $num_type::max_value(),
((Into::<U256>::into($num_type::max_value()) * 99u32) / 100u32).as_u128() as $num_type,
1,
);
assert_eq!(
$name::from_fraction(0.5) * $num_type::max_value(),
$num_type::max_value() / 2,
);
assert_eq_error_rate!(
$name::from_percent(1) * $num_type::max_value(),
$num_type::max_value() / 100,
1,
);
} else {
assert_eq!(
$name::from_fraction(0.99) * <$num_type>::max_value(),
(
(
u256ify!($name::from_fraction(0.99).0) *
u256ify!(<$num_type>::max_value()) /
u256ify!($max)
).as_u128()
) as $num_type,
);
assert_eq!(
$name::from_fraction(0.50) * <$num_type>::max_value(),
(
(
u256ify!($name::from_fraction(0.50).0) *
u256ify!(<$num_type>::max_value()) /
u256ify!($max)
).as_u128()
) as $num_type,
);
assert_eq!(
$name::from_fraction(0.01) * <$num_type>::max_value(),
(
(
u256ify!($name::from_fraction(0.01).0) *
u256ify!(<$num_type>::max_value()) /
u256ify!($max)
).as_u128()
) as $num_type,
);
}
assert_eq!($name::from_fraction(0.0) * $num_type::max_value(), 0);
assert_eq!($name::one() * $num_type::max_value(), $num_type::max_value());
assert_eq!($name::zero() * $num_type::max_value(), 0);
}
}
#[test]
fn per_thing_mul_works() {
use primitive_types::U256;
assert_eq!(
$name::from_rational_approximation(1 as $type, 3) * 30 as $type,
10,
);
$(per_thing_mul_test!($test_units);)*
}
#[test]
fn per_thing_mul_rounds_to_nearest_number() {
assert_eq!($name::from_fraction(0.33) * 10u64, 3);
assert_eq!($name::from_fraction(0.34) * 10u64, 3);
assert_eq!($name::from_fraction(0.35) * 10u64, 3);
assert_eq!($name::from_fraction(0.36) * 10u64, 4);
}
#[test]
fn per_thing_multiplication_with_large_number() {
use primitive_types::U256;
let max_minus_one = $max - 1;
assert_eq_error_rate!(
$name::from_parts(max_minus_one) * std::u128::MAX,
((Into::<U256>::into(std::u128::MAX) * max_minus_one) / $max).as_u128(),
1,
);
}
macro_rules! per_thing_from_rationale_approx_test {
($num_type:tt) => {
assert_eq!(
$name::from_rational_approximation(1 as $num_type, 0),
$name::one(),
);
assert_eq!(
$name::from_rational_approximation(1 as $num_type, 1),
$name::one(),
);
assert_eq_error_rate!(
$name::from_rational_approximation(1 as $num_type, 3).0,
$name::from_parts($max / 3).0,
2
);
assert_eq!(
$name::from_rational_approximation(1 as $num_type, 10),
$name::from_fraction(0.10),
);
assert_eq!(
$name::from_rational_approximation(1 as $num_type, 4),
$name::from_fraction(0.25),
);
assert_eq!(
$name::from_rational_approximation(1 as $num_type, 4),
$name::from_rational_approximation(2 as $num_type, 8),
);
assert_eq_error_rate!(
$name::from_rational_approximation(
$num_type::max_value() - 1,
$num_type::max_value()
).0 as $upper_type,
$name::one().0 as $upper_type,
2,
);
assert_eq_error_rate!(
$name::from_rational_approximation(
$num_type::max_value() / 3,
$num_type::max_value()
).0 as $upper_type,
$name::from_parts($max / 3).0 as $upper_type,
2,
);
assert_eq!(
$name::from_rational_approximation(1, $num_type::max_value()),
$name::zero(),
);
};
}
#[test]
fn per_thing_from_rationale_approx_works() {
let max_value = <$upper_type>::from($max);
assert_eq!(
$name::from_rational_approximation(max_value - 1, max_value + 1),
$name::from_parts($max - 2),
);
assert_eq!(
$name::from_rational_approximation(1, $max - 1),
$name::from_parts(1),
);
assert_eq!(
$name::from_rational_approximation(1, $max),
$name::from_parts(1),
);
assert_eq!(
$name::from_rational_approximation(2, 2 * max_value - 1),
$name::from_parts(1),
);
assert_eq!(
$name::from_rational_approximation(1, max_value + 1),
$name::zero(),
);
assert_eq!(
$name::from_rational_approximation(3 * max_value / 2, 3 * max_value),
$name::from_fraction(0.5),
);
$(per_thing_from_rationale_approx_test!($test_units);)*
}
#[test]
fn per_things_mul_operates_in_output_type() {
assert_eq!($name::from_fraction(0.5) * 100u64, 50u64);
assert_eq!($name::from_fraction(0.5) * 100u128, 50u128);
}
#[test]
fn per_thing_saturating_op_works() {
assert_eq_error_rate!(
$name::from_fraction(0.5).saturating_add($name::from_fraction(0.4)).0 as $upper_type,
$name::from_fraction(0.9).0 as $upper_type,
2,
);
assert_eq_error_rate!(
$name::from_fraction(0.5).saturating_add($name::from_fraction(0.5)).0 as $upper_type,
$name::one().0 as $upper_type,
2,
);
assert_eq!(
$name::from_fraction(0.6).saturating_add($name::from_fraction(0.5)),
$name::one(),
);
assert_eq_error_rate!(
$name::from_fraction(0.6).saturating_sub($name::from_fraction(0.5)).0 as $upper_type,
$name::from_fraction(0.1).0 as $upper_type,
2,
);
assert_eq!(
$name::from_fraction(0.6).saturating_sub($name::from_fraction(0.6)),
$name::from_fraction(0.0),
);
assert_eq!(
$name::from_fraction(0.6).saturating_sub($name::from_fraction(0.7)),
$name::from_fraction(0.0),
);
assert_eq_error_rate!(
$name::from_fraction(0.5).saturating_mul($name::from_fraction(0.5)).0 as $upper_type,
$name::from_fraction(0.25).0 as $upper_type,
2,
);
assert_eq_error_rate!(
$name::from_fraction(0.2).saturating_mul($name::from_fraction(0.2)).0 as $upper_type,
$name::from_fraction(0.04).0 as $upper_type,
2,
);
assert_eq_error_rate!(
$name::from_fraction(0.1).saturating_mul($name::from_fraction(0.1)).0 as $upper_type,
$name::from_fraction(0.01).0 as $upper_type,
1,
);
}
#[test]
fn per_thing_square_works() {
assert_eq!($name::from_fraction(1.0).square(), $name::from_fraction(1.0));
assert_eq!($name::from_fraction(0.5).square(), $name::from_fraction(0.25));
assert_eq!($name::from_fraction(0.1).square(), $name::from_fraction(0.01));
assert_eq!(
$name::from_fraction(0.02).square(),
$name::from_parts((4 * <$upper_type>::from($max) / 100 / 100) as $type)
);
}
#[test]
fn per_things_div_works() {
assert_eq_error_rate!(
($name::from_fraction(0.1) / $name::from_fraction(0.20)).0 as $upper_type,
$name::from_fraction(0.50).0 as $upper_type,
2,
);
assert_eq_error_rate!(
($name::from_fraction(0.1) / $name::from_fraction(0.10)).0 as $upper_type,
$name::from_fraction(1.0).0 as $upper_type,
2,
);
assert_eq_error_rate!(
($name::from_fraction(0.1) / $name::from_fraction(0.0)).0 as $upper_type,
$name::from_fraction(1.0).0 as $upper_type,
2,
);
assert_eq_error_rate!(
($name::from_fraction(0.10) / $name::from_fraction(0.05)).0 as $upper_type,
$name::from_fraction(1.0).0 as $upper_type,
2,
);
assert_eq_error_rate!(
($name::from_fraction(1.0) / $name::from_fraction(0.5)).0 as $upper_type,
$name::from_fraction(1.0).0 as $upper_type,
2,
);
}
#[test]
fn saturating_pow_works() {
assert_eq!(
$name::from_parts($max / 2).saturating_pow(0),
$name::from_parts($max),
);
assert_eq!(
$name::from_parts($max / 2).saturating_pow(1),
$name::from_parts($max / 2),
);
assert_eq!(
$name::from_parts($max / 2).saturating_pow(2),
$name::from_parts($max / 2).square(),
);
assert_eq!(
$name::from_parts($max / 2).saturating_pow(3),
$name::from_parts($max / 8),
);
assert_eq!(
$name::from_parts(0).saturating_pow(3),
$name::from_parts(0),
);
assert_eq!(
$name::from_parts($max).saturating_pow(3),
$name::from_parts($max),
);
assert_eq!(
$name::from_parts($max / 2).saturating_pow(2usize.pow(31)),
$name::from_parts(0),
);
}
#[test]
fn saturating_reciprocal_mul_works() {
assert_eq!(
$name::from_parts($max).saturating_reciprocal_mul(<$type>::from(10u8)),
10,
);
assert_eq!(
$name::from_parts($max / 2).saturating_reciprocal_mul(<$type>::from(10u8)),
20,
);
assert_eq!(
$name::from_parts(1).saturating_reciprocal_mul($max),
<$type>::max_value(),
);
assert_eq!(
$name::from_percent(60).saturating_reciprocal_mul(<$type>::from(10u8)),
17,
);
assert_eq!(
$name::from_percent(60).saturating_reciprocal_mul_floor(<$type>::from(10u8)),
16,
);
assert_eq!(
$name::from_percent(61).saturating_reciprocal_mul(<$type>::from(10u8)),
16,
);
assert_eq!(
$name::from_percent(61).saturating_reciprocal_mul_ceil(<$type>::from(10u8)),
17,
);
}
#[test]
fn saturating_truncating_mul_works() {
assert_eq!(
$name::from_percent(49).mul_floor(10 as $type),
4,
);
let a: $upper_type = $name::from_percent(50).mul_floor(($max as $upper_type).pow(2));
let b: $upper_type = ($max as $upper_type).pow(2) / 2;
if $max % 2 == 0 {
assert_eq!(a, b);
} else {
assert!(b - a < ($max as $upper_type).pow(2) / 100 as $upper_type);
}
}
#[test]
fn rational_mul_correction_works() {
assert_eq!(
super::rational_mul_correction::<$type, $name>(
<$type>::max_value(),
<$type>::max_value(),
<$type>::max_value(),
super::Rounding::Nearest,
),
0,
);
assert_eq!(
super::rational_mul_correction::<$type, $name>(
<$type>::max_value() - 1,
<$type>::max_value(),
<$type>::max_value(),
super::Rounding::Nearest,
),
<$type>::max_value() - 1,
);
assert_eq!(
super::rational_mul_correction::<$upper_type, $name>(
((<$type>::max_value() - 1) as $upper_type).pow(2),
<$type>::max_value(),
<$type>::max_value(),
super::Rounding::Nearest,
),
1,
);
assert_eq!(
super::rational_mul_correction::<$upper_type, $name>(
(<$type>::max_value() as $upper_type).pow(2) - 1,
<$type>::max_value(),
<$type>::max_value(),
super::Rounding::Nearest,
),
<$upper_type>::from((<$type>::max_value() - 1)),
);
assert_eq!(
super::rational_mul_correction::<$upper_type, $name>(
(<$type>::max_value() as $upper_type).pow(2),
<$type>::max_value(),
2 as $type,
super::Rounding::Nearest,
),
<$type>::max_value() as $upper_type / 2,
);
assert_eq!(
super::rational_mul_correction::<$upper_type, $name>(
(<$type>::max_value() as $upper_type).pow(2) - 1,
2 as $type,
<$type>::max_value(),
super::Rounding::Nearest,
),
2,
);
assert_eq!(
super::rational_mul_correction::<$upper_type, $name>(
(<$type>::max_value() as $upper_type).pow(2) - 1,
2 as $type,
<$type>::max_value(),
super::Rounding::Down,
),
1,
);
}
#[test]
#[allow(unused)]
fn const_fns_work() {
const C1: $name = $name::from_percent(50);
const C2: $name = $name::one();
const C3: $name = $name::zero();
const C4: $name = $name::from_parts(1);
const C5: bool = C1.deconstruct() == 0;
}
#[test]
fn compact_decoding_saturate_when_beyond_accuracy() {
use num_traits::Bounded;
use codec::Compact;
let p = Compact::<$name>::decode(&mut &Compact(<$type>::max_value()).encode()[..])
.unwrap();
assert_eq!((p.0).0, $max);
assert_eq!($name::from(p), $name::max_value());
}
}
};
}
macro_rules! implement_per_thing_with_perthousand {
(
$name:ident,
$test_mod:ident,
$pt_test_mod:ident,
[$($test_units:tt),+],
$max:tt,
$type:ty,
$upper_type:ty,
$title:expr $(,)?
) => {
implement_per_thing! {
$name, $test_mod, [ $( $test_units ),+ ], $max, $type, $upper_type, $title,
}
impl $name {
pub const fn from_perthousand(x: $type) -> Self {
Self(([x, 1000][(x > 1000) as usize] as $upper_type * $max as $upper_type / 1000) as $type)
}
}
#[cfg(test)]
mod $pt_test_mod {
use super::$name;
use crate::traits::Zero;
#[test]
fn from_perthousand_works() {
assert_eq!($name::from_perthousand(00), $name::from_parts(Zero::zero()));
assert_eq!($name::from_perthousand(100), $name::from_parts($max / 10));
assert_eq!($name::from_perthousand(1000), $name::from_parts($max));
assert_eq!($name::from_perthousand(2000), $name::from_parts($max));
}
#[test]
#[allow(unused)]
fn const_fns_work() {
const C1: $name = $name::from_perthousand(500);
}
}
}
}
implement_per_thing!(
Percent,
test_per_cent,
[u32, u64, u128],
100u8,
u8,
u16,
"_Percent_",
);
implement_per_thing_with_perthousand!(
PerU16,
test_peru16,
test_peru16_extra,
[u32, u64, u128],
65535_u16,
u16,
u32,
"_Parts per 65535_",
);
implement_per_thing_with_perthousand!(
Permill,
test_permill,
test_permill_extra,
[u32, u64, u128],
1_000_000u32,
u32,
u64,
"_Parts per Million_",
);
implement_per_thing_with_perthousand!(
Perbill,
test_perbill,
test_perbill_extra,
[u32, u64, u128],
1_000_000_000u32,
u32,
u64,
"_Parts per Billion_",
);
implement_per_thing_with_perthousand!(
Perquintill,
test_perquintill,
test_perquintill_extra,
[u64, u128],
1_000_000_000_000_000_000u64,
u64,
u128,
"_Parts per Quintillion_",
);