1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
use crate::{Perbill, traits::{AtLeast32BitUnsigned, SaturatedConversion}};
use core::ops::Sub;
#[derive(PartialEq, Eq, sp_core::RuntimeDebug)]
pub struct PiecewiseLinear<'a> {
pub points: &'a [(Perbill, Perbill)],
pub maximum: Perbill,
}
fn abs_sub<N: Ord + Sub<Output=N> + Clone>(a: N, b: N) -> N where {
a.clone().max(b.clone()) - a.min(b)
}
impl<'a> PiecewiseLinear<'a> {
pub fn calculate_for_fraction_times_denominator<N>(&self, n: N, d: N) -> N where
N: AtLeast32BitUnsigned + Clone
{
let n = n.min(d.clone());
if self.points.len() == 0 {
return N::zero()
}
let next_point_index = self.points.iter()
.position(|p| n < p.0 * d.clone());
let (prev, next) = if let Some(next_point_index) = next_point_index {
if let Some(previous_point_index) = next_point_index.checked_sub(1) {
(self.points[previous_point_index], self.points[next_point_index])
} else {
return self.points.first().map(|p| p.1).unwrap_or_else(Perbill::zero) * d
}
} else {
return self.points.last().map(|p| p.1).unwrap_or_else(Perbill::zero) * d
};
let delta_y = multiply_by_rational_saturating(
abs_sub(n.clone(), prev.0 * d.clone()),
abs_sub(next.1.deconstruct(), prev.1.deconstruct()),
next.0.deconstruct().saturating_sub(prev.0.deconstruct()),
);
if (n > prev.0 * d.clone()) == (next.1.deconstruct() > prev.1.deconstruct()) {
(prev.1 * d).saturating_add(delta_y)
} else {
(prev.1 * d).saturating_sub(delta_y)
}
}
}
fn multiply_by_rational_saturating<N>(value: N, p: u32, q: u32) -> N
where N: AtLeast32BitUnsigned + Clone
{
let q = q.max(1);
let result_divisor_part = (value.clone() / q.into()).saturating_mul(p.into());
let result_remainder_part = {
let rem = value % q.into();
let rem_u32 = rem.saturated_into::<u32>();
let rem_part = rem_u32 as u64 * p as u64 / q as u64;
rem_part.saturated_into::<N>()
};
result_divisor_part.saturating_add(result_remainder_part)
}
#[test]
fn test_multiply_by_rational_saturating() {
use std::convert::TryInto;
let div = 100u32;
for value in 0..=div {
for p in 0..=div {
for q in 1..=div {
let value: u64 = (value as u128 * u64::max_value() as u128 / div as u128)
.try_into().unwrap();
let p = (p as u64 * u32::max_value() as u64 / div as u64)
.try_into().unwrap();
let q = (q as u64 * u32::max_value() as u64 / div as u64)
.try_into().unwrap();
assert_eq!(
multiply_by_rational_saturating(value, p, q),
(value as u128 * p as u128 / q as u128)
.try_into().unwrap_or(u64::max_value())
);
}
}
}
}
#[test]
fn test_calculate_for_fraction_times_denominator() {
use std::convert::TryInto;
let curve = PiecewiseLinear {
points: &[
(Perbill::from_parts(0_000_000_000), Perbill::from_parts(0_500_000_000)),
(Perbill::from_parts(0_500_000_000), Perbill::from_parts(1_000_000_000)),
(Perbill::from_parts(1_000_000_000), Perbill::from_parts(0_000_000_000)),
],
maximum: Perbill::from_parts(1_000_000_000),
};
pub fn formal_calculate_for_fraction_times_denominator(n: u64, d: u64) -> u64 {
if n <= Perbill::from_parts(0_500_000_000) * d.clone() {
n + d / 2
} else {
(d as u128 * 2 - n as u128 * 2).try_into().unwrap()
}
}
let div = 100u32;
for d in 0..=div {
for n in 0..=d {
let d: u64 = (d as u128 * u64::max_value() as u128 / div as u128)
.try_into().unwrap();
let n: u64 = (n as u128 * u64::max_value() as u128 / div as u128)
.try_into().unwrap();
let res = curve.calculate_for_fraction_times_denominator(n, d);
let expected = formal_calculate_for_fraction_times_denominator(n, d);
assert!(abs_sub(res, expected) <= 1);
}
}
}