1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
// Copyright 2015-2020 Parity Technologies (UK) Ltd.
// This file is part of Substrate.

// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Parity.  If not, see <http://www.gnu.org/licenses/>.

//! Utility functions to interact with Substrate's Base-16 Modified Merkle Patricia tree ("trie").

#![cfg_attr(not(feature = "std"), no_std)]

mod error;
mod node_header;
mod node_codec;
mod storage_proof;
mod trie_stream;

use sp_std::{boxed::Box, marker::PhantomData, vec::Vec, borrow::Borrow};
use hash_db::{Hasher, Prefix};
use trie_db::proof::{generate_proof, verify_proof};
pub use trie_db::proof::VerifyError;
/// Our `NodeCodec`-specific error.
pub use error::Error;
/// The Substrate format implementation of `TrieStream`.
pub use trie_stream::TrieStream;
/// The Substrate format implementation of `NodeCodec`.
pub use node_codec::NodeCodec;
pub use storage_proof::StorageProof;
/// Various re-exports from the `trie-db` crate.
pub use trie_db::{
	Trie, TrieMut, DBValue, Recorder, CError, Query, TrieLayout, TrieConfiguration, nibble_ops, TrieDBIterator,
};
/// Various re-exports from the `memory-db` crate.
pub use memory_db::KeyFunction;
pub use memory_db::prefixed_key;
/// Various re-exports from the `hash-db` crate.
pub use hash_db::{HashDB as HashDBT, EMPTY_PREFIX};

#[derive(Default)]
/// substrate trie layout
pub struct Layout<H>(sp_std::marker::PhantomData<H>);

impl<H: Hasher> TrieLayout for Layout<H> {
	const USE_EXTENSION: bool = false;
	const ALLOW_EMPTY: bool = true;
	type Hash = H;
	type Codec = NodeCodec<Self::Hash>;
}

impl<H: Hasher> TrieConfiguration for Layout<H> {
	fn trie_root<I, A, B>(input: I) -> <Self::Hash as Hasher>::Out where
		I: IntoIterator<Item = (A, B)>,
		A: AsRef<[u8]> + Ord,
		B: AsRef<[u8]>,
	{
		trie_root::trie_root_no_extension::<H, TrieStream, _, _, _>(input)
	}

	fn trie_root_unhashed<I, A, B>(input: I) -> Vec<u8> where
		I: IntoIterator<Item = (A, B)>,
		A: AsRef<[u8]> + Ord,
		B: AsRef<[u8]>,
	{
		trie_root::unhashed_trie_no_extension::<H, TrieStream, _, _, _>(input)
	}

	fn encode_index(input: u32) -> Vec<u8> {
		codec::Encode::encode(&codec::Compact(input))
	}
}

#[cfg(not(feature = "memory-tracker"))]
type MemTracker = memory_db::NoopTracker<trie_db::DBValue>;
#[cfg(feature = "memory-tracker")]
type MemTracker = memory_db::MemCounter<trie_db::DBValue>;

/// TrieDB error over `TrieConfiguration` trait.
pub type TrieError<L> = trie_db::TrieError<TrieHash<L>, CError<L>>;
/// Reexport from `hash_db`, with genericity set for `Hasher` trait.
pub trait AsHashDB<H: Hasher>: hash_db::AsHashDB<H, trie_db::DBValue> {}
impl<H: Hasher, T: hash_db::AsHashDB<H, trie_db::DBValue>> AsHashDB<H> for T {}
/// Reexport from `hash_db`, with genericity set for `Hasher` trait.
pub type HashDB<'a, H> = dyn hash_db::HashDB<H, trie_db::DBValue> + 'a;
/// Reexport from `hash_db`, with genericity set for `Hasher` trait.
/// This uses a `KeyFunction` for prefixing keys internally (avoiding
/// key conflict for non random keys).
pub type PrefixedMemoryDB<H> = memory_db::MemoryDB<
	H, memory_db::PrefixedKey<H>, trie_db::DBValue, MemTracker
>;
/// Reexport from `hash_db`, with genericity set for `Hasher` trait.
/// This uses a noops `KeyFunction` (key addressing must be hashed or using
/// an encoding scheme that avoid key conflict).
pub type MemoryDB<H> = memory_db::MemoryDB<
	H, memory_db::HashKey<H>, trie_db::DBValue, MemTracker,
>;
/// Reexport from `hash_db`, with genericity set for `Hasher` trait.
pub type GenericMemoryDB<H, KF> = memory_db::MemoryDB<
	H, KF, trie_db::DBValue, MemTracker
>;

/// Persistent trie database read-access interface for the a given hasher.
pub type TrieDB<'a, L> = trie_db::TrieDB<'a, L>;
/// Persistent trie database write-access interface for the a given hasher.
pub type TrieDBMut<'a, L> = trie_db::TrieDBMut<'a, L>;
/// Querying interface, as in `trie_db` but less generic.
pub type Lookup<'a, L, Q> = trie_db::Lookup<'a, L, Q>;
/// Hash type for a trie layout.
pub type TrieHash<L> = <<L as TrieLayout>::Hash as Hasher>::Out;

/// This module is for non generic definition of trie type.
/// Only the `Hasher` trait is generic in this case.
pub mod trie_types {
	pub type Layout<H> = super::Layout<H>;
	/// Persistent trie database read-access interface for the a given hasher.
	pub type TrieDB<'a, H> = super::TrieDB<'a, Layout<H>>;
	/// Persistent trie database write-access interface for the a given hasher.
	pub type TrieDBMut<'a, H> = super::TrieDBMut<'a, Layout<H>>;
	/// Querying interface, as in `trie_db` but less generic.
	pub type Lookup<'a, H, Q> = trie_db::Lookup<'a, Layout<H>, Q>;
	/// As in `trie_db`, but less generic, error type for the crate.
	pub type TrieError<H> = trie_db::TrieError<H, super::Error>;
}

/// Create a proof for a subset of keys in a trie.
///
/// The `keys` may contain any set of keys regardless of each one of them is included
/// in the `db`.
///
/// For a key `K` that is included in the `db` a proof of inclusion is generated.
/// For a key `K` that is not included in the `db` a proof of non-inclusion is generated.
/// These can be later checked in `verify_trie_proof`.
pub fn generate_trie_proof<'a, L: TrieConfiguration, I, K, DB>(
	db: &DB,
	root: TrieHash<L>,
	keys: I,
) -> Result<Vec<Vec<u8>>, Box<TrieError<L>>> where
	I: IntoIterator<Item=&'a K>,
	K: 'a + AsRef<[u8]>,
	DB: hash_db::HashDBRef<L::Hash, trie_db::DBValue>,
{
	let trie = TrieDB::<L>::new(db, &root)?;
	generate_proof(&trie, keys)
}

/// Verify a set of key-value pairs against a trie root and a proof.
///
/// Checks a set of keys with optional values for inclusion in the proof that was generated by
/// `generate_trie_proof`.
/// If the value in the pair is supplied (`(key, Some(value))`), this key-value pair will be
/// checked for inclusion in the proof.
/// If the value is omitted (`(key, None)`), this key will be checked for non-inclusion in the
/// proof.
pub fn verify_trie_proof<'a, L: TrieConfiguration, I, K, V>(
	root: &TrieHash<L>,
	proof: &[Vec<u8>],
	items: I,
) -> Result<(), VerifyError<TrieHash<L>, error::Error>> where
	I: IntoIterator<Item=&'a (K, Option<V>)>,
	K: 'a + AsRef<[u8]>,
	V: 'a + AsRef<[u8]>,
{
	verify_proof::<Layout<L::Hash>, _, _, _>(root, proof, items)
}

/// Determine a trie root given a hash DB and delta values.
pub fn delta_trie_root<L: TrieConfiguration, I, A, B, DB, V>(
	db: &mut DB,
	mut root: TrieHash<L>,
	delta: I
) -> Result<TrieHash<L>, Box<TrieError<L>>> where
	I: IntoIterator<Item = (A, B)>,
	A: Borrow<[u8]>,
	B: Borrow<Option<V>>,
	V: Borrow<[u8]>,
	DB: hash_db::HashDB<L::Hash, trie_db::DBValue>,
{
	{
		let mut trie = TrieDBMut::<L>::from_existing(&mut *db, &mut root)?;

		let mut delta = delta.into_iter().collect::<Vec<_>>();
		delta.sort_by(|l, r| l.0.borrow().cmp(r.0.borrow()));

		for (key, change) in delta {
			match change.borrow() {
				Some(val) => trie.insert(key.borrow(), val.borrow())?,
				None => trie.remove(key.borrow())?,
			};
		}
	}

	Ok(root)
}

/// Read a value from the trie.
pub fn read_trie_value<L: TrieConfiguration, DB: hash_db::HashDBRef<L::Hash, trie_db::DBValue>>(
	db: &DB,
	root: &TrieHash<L>,
	key: &[u8]
) -> Result<Option<Vec<u8>>, Box<TrieError<L>>> {
	Ok(TrieDB::<L>::new(&*db, root)?.get(key).map(|x| x.map(|val| val.to_vec()))?)
}

/// Read a value from the trie with given Query.
pub fn read_trie_value_with<
	L: TrieConfiguration,
	Q: Query<L::Hash, Item=DBValue>,
	DB: hash_db::HashDBRef<L::Hash, trie_db::DBValue>
>(
	db: &DB,
	root: &TrieHash<L>,
	key: &[u8],
	query: Q
) -> Result<Option<Vec<u8>>, Box<TrieError<L>>> {
	Ok(TrieDB::<L>::new(&*db, root)?.get_with(key, query).map(|x| x.map(|val| val.to_vec()))?)
}

/// Determine the empty child trie root.
pub fn empty_child_trie_root<L: TrieConfiguration>(
) -> <L::Hash as Hasher>::Out {
	L::trie_root::<_, Vec<u8>, Vec<u8>>(core::iter::empty())
}

/// Determine a child trie root given its ordered contents, closed form. H is the default hasher,
/// but a generic implementation may ignore this type parameter and use other hashers.
pub fn child_trie_root<L: TrieConfiguration, I, A, B>(
	input: I,
) -> <L::Hash as Hasher>::Out
	where
		I: IntoIterator<Item = (A, B)>,
		A: AsRef<[u8]> + Ord,
		B: AsRef<[u8]>,
{
	L::trie_root(input)
}

/// Determine a child trie root given a hash DB and delta values. H is the default hasher,
/// but a generic implementation may ignore this type parameter and use other hashers.
pub fn child_delta_trie_root<L: TrieConfiguration, I, A, B, DB, RD, V>(
	keyspace: &[u8],
	db: &mut DB,
	root_data: RD,
	delta: I,
) -> Result<<L::Hash as Hasher>::Out, Box<TrieError<L>>>
	where
		I: IntoIterator<Item = (A, B)>,
		A: Borrow<[u8]>,
		B: Borrow<Option<V>>,
		V: Borrow<[u8]>,
		RD: AsRef<[u8]>,
		DB: hash_db::HashDB<L::Hash, trie_db::DBValue>
{
	let mut root = TrieHash::<L>::default();
	// root is fetched from DB, not writable by runtime, so it's always valid.
	root.as_mut().copy_from_slice(root_data.as_ref());

	let mut db = KeySpacedDBMut::new(&mut *db, keyspace);
	delta_trie_root::<L, _, _, _, _, _>(
		&mut db,
		root,
		delta,
	)
}

/// Call `f` for all keys in a child trie.
pub fn for_keys_in_child_trie<L: TrieConfiguration, F: FnMut(&[u8]), DB>(
	keyspace: &[u8],
	db: &DB,
	root_slice: &[u8],
	mut f: F
) -> Result<(), Box<TrieError<L>>>
	where
		DB: hash_db::HashDBRef<L::Hash, trie_db::DBValue>
{
	let mut root = TrieHash::<L>::default();
	// root is fetched from DB, not writable by runtime, so it's always valid.
	root.as_mut().copy_from_slice(root_slice);

	let db = KeySpacedDB::new(&*db, keyspace);
	let trie = TrieDB::<L>::new(&db, &root)?;
	let iter = trie.iter()?;

	for x in iter {
		let (key, _) = x?;
		f(&key);
	}

	Ok(())
}

/// Record all keys for a given root.
pub fn record_all_keys<L: TrieConfiguration, DB>(
	db: &DB,
	root: &TrieHash<L>,
	recorder: &mut Recorder<TrieHash<L>>
) -> Result<(), Box<TrieError<L>>> where
	DB: hash_db::HashDBRef<L::Hash, trie_db::DBValue>
{
	let trie = TrieDB::<L>::new(&*db, root)?;
	let iter = trie.iter()?;

	for x in iter {
		let (key, _) = x?;

		// there's currently no API like iter_with()
		// => use iter to enumerate all keys AND lookup each
		// key using get_with
		trie.get_with(&key, &mut *recorder)?;
	}

	Ok(())
}

/// Read a value from the child trie.
pub fn read_child_trie_value<L: TrieConfiguration, DB>(
	keyspace: &[u8],
	db: &DB,
	root_slice: &[u8],
	key: &[u8]
) -> Result<Option<Vec<u8>>, Box<TrieError<L>>>
	where
		DB: hash_db::HashDBRef<L::Hash, trie_db::DBValue>
{
	let mut root = TrieHash::<L>::default();
	// root is fetched from DB, not writable by runtime, so it's always valid.
	root.as_mut().copy_from_slice(root_slice);

	let db = KeySpacedDB::new(&*db, keyspace);
	Ok(TrieDB::<L>::new(&db, &root)?.get(key).map(|x| x.map(|val| val.to_vec()))?)
}

/// Read a value from the child trie with given query.
pub fn read_child_trie_value_with<L: TrieConfiguration, Q: Query<L::Hash, Item=DBValue>, DB>(
	keyspace: &[u8],
	db: &DB,
	root_slice: &[u8],
	key: &[u8],
	query: Q
) -> Result<Option<Vec<u8>>, Box<TrieError<L>>>
	where
		DB: hash_db::HashDBRef<L::Hash, trie_db::DBValue>
{
	let mut root = TrieHash::<L>::default();
	// root is fetched from DB, not writable by runtime, so it's always valid.
	root.as_mut().copy_from_slice(root_slice);

	let db = KeySpacedDB::new(&*db, keyspace);
	Ok(TrieDB::<L>::new(&db, &root)?.get_with(key, query).map(|x| x.map(|val| val.to_vec()))?)
}

/// `HashDB` implementation that append a encoded prefix (unique id bytes) in addition to the
/// prefix of every key value.
pub struct KeySpacedDB<'a, DB, H>(&'a DB, &'a [u8], PhantomData<H>);

/// `HashDBMut` implementation that append a encoded prefix (unique id bytes) in addition to the
/// prefix of every key value.
///
/// Mutable variant of `KeySpacedDB`, see [`KeySpacedDB`].
pub struct KeySpacedDBMut<'a, DB, H>(&'a mut DB, &'a [u8], PhantomData<H>);

/// Utility function used to merge some byte data (keyspace) and `prefix` data
/// before calling key value database primitives.
fn keyspace_as_prefix_alloc(ks: &[u8], prefix: Prefix) -> (Vec<u8>, Option<u8>) {
	let mut result = sp_std::vec![0; ks.len() + prefix.0.len()];
	result[..ks.len()].copy_from_slice(ks);
	result[ks.len()..].copy_from_slice(prefix.0);
	(result, prefix.1)
}

impl<'a, DB, H> KeySpacedDB<'a, DB, H> where
	H: Hasher,
{
	/// instantiate new keyspaced db
	pub fn new(db: &'a DB, ks: &'a [u8]) -> Self {
		KeySpacedDB(db, ks, PhantomData)
	}
}

impl<'a, DB, H> KeySpacedDBMut<'a, DB, H> where
	H: Hasher,
{
	/// instantiate new keyspaced db
	pub fn new(db: &'a mut DB, ks: &'a [u8]) -> Self {
		KeySpacedDBMut(db, ks, PhantomData)
	}
}

impl<'a, DB, H, T> hash_db::HashDBRef<H, T> for KeySpacedDB<'a, DB, H> where
	DB: hash_db::HashDBRef<H, T>,
	H: Hasher,
	T: From<&'static [u8]>,
{
	fn get(&self, key: &H::Out, prefix: Prefix) -> Option<T> {
		let derived_prefix = keyspace_as_prefix_alloc(self.1, prefix);
		self.0.get(key, (&derived_prefix.0, derived_prefix.1))
	}

	fn contains(&self, key: &H::Out, prefix: Prefix) -> bool {
		let derived_prefix = keyspace_as_prefix_alloc(self.1, prefix);
		self.0.contains(key, (&derived_prefix.0, derived_prefix.1))
	}
}

impl<'a, DB, H, T> hash_db::HashDB<H, T> for KeySpacedDBMut<'a, DB, H> where
	DB: hash_db::HashDB<H, T>,
	H: Hasher,
	T: Default + PartialEq<T> + for<'b> From<&'b [u8]> + Clone + Send + Sync,
{
	fn get(&self, key: &H::Out, prefix: Prefix) -> Option<T> {
		let derived_prefix = keyspace_as_prefix_alloc(self.1, prefix);
		self.0.get(key, (&derived_prefix.0, derived_prefix.1))
	}

	fn contains(&self, key: &H::Out, prefix: Prefix) -> bool {
		let derived_prefix = keyspace_as_prefix_alloc(self.1, prefix);
		self.0.contains(key, (&derived_prefix.0, derived_prefix.1))
	}

	fn insert(&mut self, prefix: Prefix, value: &[u8]) -> H::Out {
		let derived_prefix = keyspace_as_prefix_alloc(self.1, prefix);
		self.0.insert((&derived_prefix.0, derived_prefix.1), value)
	}

	fn emplace(&mut self, key: H::Out, prefix: Prefix, value: T) {
		let derived_prefix = keyspace_as_prefix_alloc(self.1, prefix);
		self.0.emplace(key, (&derived_prefix.0, derived_prefix.1), value)
	}

	fn remove(&mut self, key: &H::Out, prefix: Prefix) {
		let derived_prefix = keyspace_as_prefix_alloc(self.1, prefix);
		self.0.remove(key, (&derived_prefix.0, derived_prefix.1))
	}
}

impl<'a, DB, H, T> hash_db::AsHashDB<H, T> for KeySpacedDBMut<'a, DB, H> where
	DB: hash_db::HashDB<H, T>,
	H: Hasher,
	T: Default + PartialEq<T> + for<'b> From<&'b [u8]> + Clone + Send + Sync,
{
	fn as_hash_db(&self) -> &dyn hash_db::HashDB<H, T> { &*self }

	fn as_hash_db_mut<'b>(&'b mut self) -> &'b mut (dyn hash_db::HashDB<H, T> + 'b) {
		&mut *self
	}
}

/// Constants used into trie simplification codec.
mod trie_constants {
	pub const EMPTY_TRIE: u8 = 0;
	pub const NIBBLE_SIZE_BOUND: usize = u16::max_value() as usize;
	pub const LEAF_PREFIX_MASK: u8 = 0b_01 << 6;
	pub const BRANCH_WITHOUT_MASK: u8 = 0b_10 << 6;
	pub const BRANCH_WITH_MASK: u8 = 0b_11 << 6;
}

#[cfg(test)]
mod tests {
	use super::*;
	use codec::{Encode, Decode, Compact};
	use sp_core::Blake2Hasher;
	use hash_db::{HashDB, Hasher};
	use trie_db::{DBValue, TrieMut, Trie, NodeCodec as NodeCodecT};
	use trie_standardmap::{Alphabet, ValueMode, StandardMap};
	use hex_literal::hex;

	type Layout = super::Layout<Blake2Hasher>;

	fn hashed_null_node<T: TrieConfiguration>() -> TrieHash<T> {
		<T::Codec as NodeCodecT>::hashed_null_node()
	}

	fn check_equivalent<T: TrieConfiguration>(input: &Vec<(&[u8], &[u8])>) {
		{
			let closed_form = T::trie_root(input.clone());
			let d = T::trie_root_unhashed(input.clone());
			println!("Data: {:#x?}, {:#x?}", d, Blake2Hasher::hash(&d[..]));
			let persistent = {
				let mut memdb = MemoryDB::default();
				let mut root = Default::default();
				let mut t = TrieDBMut::<T>::new(&mut memdb, &mut root);
				for (x, y) in input.iter().rev() {
					t.insert(x, y).unwrap();
				}
				t.root().clone()
			};
			assert_eq!(closed_form, persistent);
		}
	}

	fn check_iteration<T: TrieConfiguration>(input: &Vec<(&[u8], &[u8])>) {
		let mut memdb = MemoryDB::default();
		let mut root = Default::default();
		{
			let mut t = TrieDBMut::<T>::new(&mut memdb, &mut root);
			for (x, y) in input.clone() {
				t.insert(x, y).unwrap();
			}
		}
		{
			let t = TrieDB::<T>::new(&mut memdb, &root).unwrap();
			assert_eq!(
				input.iter().map(|(i, j)| (i.to_vec(), j.to_vec())).collect::<Vec<_>>(),
				t.iter().unwrap()
					.map(|x| x.map(|y| (y.0, y.1.to_vec())).unwrap())
					.collect::<Vec<_>>()
			);
		}
	}

	#[test]
	fn default_trie_root() {
		let mut db = MemoryDB::default();
		let mut root = TrieHash::<Layout>::default();
		let mut empty = TrieDBMut::<Layout>::new(&mut db, &mut root);
		empty.commit();
		let root1 = empty.root().as_ref().to_vec();
		let root2: Vec<u8> = Layout::trie_root::<_, Vec<u8>, Vec<u8>>(
			std::iter::empty(),
		).as_ref().iter().cloned().collect();

		assert_eq!(root1, root2);
	}

	#[test]
	fn empty_is_equivalent() {
		let input: Vec<(&[u8], &[u8])> = vec![];
		check_equivalent::<Layout>(&input);
		check_iteration::<Layout>(&input);
	}

	#[test]
	fn leaf_is_equivalent() {
		let input: Vec<(&[u8], &[u8])> = vec![(&[0xaa][..], &[0xbb][..])];
		check_equivalent::<Layout>(&input);
		check_iteration::<Layout>(&input);
	}

	#[test]
	fn branch_is_equivalent() {
		let input: Vec<(&[u8], &[u8])> = vec![
			(&[0xaa][..], &[0x10][..]),
			(&[0xba][..], &[0x11][..]),
		];
		check_equivalent::<Layout>(&input);
		check_iteration::<Layout>(&input);
	}

	#[test]
	fn extension_and_branch_is_equivalent() {
		let input: Vec<(&[u8], &[u8])> = vec![
			(&[0xaa][..], &[0x10][..]),
			(&[0xab][..], &[0x11][..]),
		];
		check_equivalent::<Layout>(&input);
		check_iteration::<Layout>(&input);
	}

	#[test]
	fn standard_is_equivalent() {
		let st = StandardMap {
			alphabet: Alphabet::All,
			min_key: 32,
			journal_key: 0,
			value_mode: ValueMode::Random,
			count: 1000,
		};
		let mut d = st.make();
		d.sort_by(|&(ref a, _), &(ref b, _)| a.cmp(b));
		let dr = d.iter().map(|v| (&v.0[..], &v.1[..])).collect();
		check_equivalent::<Layout>(&dr);
		check_iteration::<Layout>(&dr);
	}

	#[test]
	fn extension_and_branch_with_value_is_equivalent() {
		let input: Vec<(&[u8], &[u8])> = vec![
			(&[0xaa][..], &[0xa0][..]),
			(&[0xaa, 0xaa][..], &[0xaa][..]),
			(&[0xaa, 0xbb][..], &[0xab][..])
		];
		check_equivalent::<Layout>(&input);
		check_iteration::<Layout>(&input);
	}

	#[test]
	fn bigger_extension_and_branch_with_value_is_equivalent() {
		let input: Vec<(&[u8], &[u8])> = vec![
			(&[0xaa][..], &[0xa0][..]),
			(&[0xaa, 0xaa][..], &[0xaa][..]),
			(&[0xaa, 0xbb][..], &[0xab][..]),
			(&[0xbb][..], &[0xb0][..]),
			(&[0xbb, 0xbb][..], &[0xbb][..]),
			(&[0xbb, 0xcc][..], &[0xbc][..]),
		];
		check_equivalent::<Layout>(&input);
		check_iteration::<Layout>(&input);
	}

	#[test]
	fn single_long_leaf_is_equivalent() {
		let input: Vec<(&[u8], &[u8])> = vec![
			(&[0xaa][..], &b"ABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABC"[..]),
			(&[0xba][..], &[0x11][..]),
		];
		check_equivalent::<Layout>(&input);
		check_iteration::<Layout>(&input);
	}

	#[test]
	fn two_long_leaves_is_equivalent() {
		let input: Vec<(&[u8], &[u8])> = vec![
			(&[0xaa][..], &b"ABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABC"[..]),
			(&[0xba][..], &b"ABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABC"[..])
		];
		check_equivalent::<Layout>(&input);
		check_iteration::<Layout>(&input);
	}

	fn populate_trie<'db, T: TrieConfiguration>(
		db: &'db mut dyn HashDB<T::Hash, DBValue>,
		root: &'db mut TrieHash<T>,
		v: &[(Vec<u8>, Vec<u8>)]
	) -> TrieDBMut<'db, T> {
		let mut t = TrieDBMut::<T>::new(db, root);
		for i in 0..v.len() {
			let key: &[u8]= &v[i].0;
			let val: &[u8] = &v[i].1;
			t.insert(key, val).unwrap();
		}
		t
	}

	fn unpopulate_trie<'db, T: TrieConfiguration>(
		t: &mut TrieDBMut<'db, T>,
		v: &[(Vec<u8>, Vec<u8>)],
	) {
		for i in v {
			let key: &[u8]= &i.0;
			t.remove(key).unwrap();
		}
	}

	#[test]
	fn random_should_work() {
		let mut seed = <Blake2Hasher as Hasher>::Out::zero();
		for test_i in 0..10000 {
			if test_i % 50 == 0 {
				println!("{:?} of 10000 stress tests done", test_i);
			}
			let x = StandardMap {
				alphabet: Alphabet::Custom(b"@QWERTYUIOPASDFGHJKLZXCVBNM[/]^_".to_vec()),
				min_key: 5,
				journal_key: 0,
				value_mode: ValueMode::Index,
				count: 100,
			}.make_with(seed.as_fixed_bytes_mut());

			let real = Layout::trie_root(x.clone());
			let mut memdb = MemoryDB::default();
			let mut root = Default::default();
			let mut memtrie = populate_trie::<Layout>(&mut memdb, &mut root, &x);

			memtrie.commit();
			if *memtrie.root() != real {
				println!("TRIE MISMATCH");
				println!("");
				println!("{:?} vs {:?}", memtrie.root(), real);
				for i in &x {
					println!("{:#x?} -> {:#x?}", i.0, i.1);
				}
			}
			assert_eq!(*memtrie.root(), real);
			unpopulate_trie::<Layout>(&mut memtrie, &x);
			memtrie.commit();
			let hashed_null_node = hashed_null_node::<Layout>();
			if *memtrie.root() != hashed_null_node {
				println!("- TRIE MISMATCH");
				println!("");
				println!("{:?} vs {:?}", memtrie.root(), hashed_null_node);
				for i in &x {
					println!("{:#x?} -> {:#x?}", i.0, i.1);
				}
			}
			assert_eq!(*memtrie.root(), hashed_null_node);
		}
	}

	fn to_compact(n: u8) -> u8 {
		Compact(n).encode()[0]
	}

	#[test]
	fn codec_trie_empty() {
		let input: Vec<(&[u8], &[u8])> = vec![];
		let trie = Layout::trie_root_unhashed::<_, _, _>(input);
		println!("trie: {:#x?}", trie);
		assert_eq!(trie, vec![0x0]);
	}

	#[test]
	fn codec_trie_single_tuple() {
		let input = vec![
			(vec![0xaa], vec![0xbb])
		];
		let trie = Layout::trie_root_unhashed::<_, _, _>(input);
		println!("trie: {:#x?}", trie);
		assert_eq!(trie, vec![
			0x42,					// leaf 0x40 (2^6) with (+) key of 2 nibbles (0x02)
			0xaa,					// key data
			to_compact(1),			// length of value in bytes as Compact
			0xbb					// value data
		]);
	}

	#[test]
	fn codec_trie_two_tuples_disjoint_keys() {
		let input = vec![(&[0x48, 0x19], &[0xfe]), (&[0x13, 0x14], &[0xff])];
		let trie = Layout::trie_root_unhashed::<_, _, _>(input);
		println!("trie: {:#x?}", trie);
		let mut ex = Vec::<u8>::new();
		ex.push(0x80);									// branch, no value (0b_10..) no nibble
		ex.push(0x12);									// slots 1 & 4 are taken from 0-7
		ex.push(0x00);									// no slots from 8-15
		ex.push(to_compact(0x05));						// first slot: LEAF, 5 bytes long.
		ex.push(0x43);									// leaf 0x40 with 3 nibbles
		ex.push(0x03);									// first nibble
		ex.push(0x14);									// second & third nibble
		ex.push(to_compact(0x01));						// 1 byte data
		ex.push(0xff);									// value data
		ex.push(to_compact(0x05));						// second slot: LEAF, 5 bytes long.
		ex.push(0x43);									// leaf with 3 nibbles
		ex.push(0x08);									// first nibble
		ex.push(0x19);									// second & third nibble
		ex.push(to_compact(0x01));						// 1 byte data
		ex.push(0xfe);									// value data

		assert_eq!(trie, ex);
	}

	#[test]
	fn iterator_works() {
		let pairs = vec![
			(hex!("0103000000000000000464").to_vec(), hex!("0400000000").to_vec()),
			(hex!("0103000000000000000469").to_vec(), hex!("0401000000").to_vec()),
		];

		let mut mdb = MemoryDB::default();
		let mut root = Default::default();
		let _ = populate_trie::<Layout>(&mut mdb, &mut root, &pairs);

		let trie = TrieDB::<Layout>::new(&mdb, &root).unwrap();

		let iter = trie.iter().unwrap();
		let mut iter_pairs = Vec::new();
		for pair in iter {
			let (key, value) = pair.unwrap();
			iter_pairs.push((key, value.to_vec()));
		}

		assert_eq!(pairs, iter_pairs);
	}

	#[test]
	fn proof_non_inclusion_works() {
		let pairs = vec![
			(hex!("0102").to_vec(), hex!("01").to_vec()),
			(hex!("0203").to_vec(), hex!("0405").to_vec()),
		];

		let mut memdb = MemoryDB::default();
		let mut root = Default::default();
		populate_trie::<Layout>(&mut memdb, &mut root, &pairs);

		let non_included_key: Vec<u8> = hex!("0909").to_vec();
		let proof = generate_trie_proof::<Layout, _, _, _>(
			&memdb,
			root,
			&[non_included_key.clone()]
		).unwrap();

		// Verifying that the K was not included into the trie should work.
		assert!(verify_trie_proof::<Layout, _, _, Vec<u8>>(
				&root,
				&proof,
				&[(non_included_key.clone(), None)],
			).is_ok()
		);

		// Verifying that the K was included into the trie should fail.
		assert!(verify_trie_proof::<Layout, _, _, Vec<u8>>(
				&root,
				&proof,
				&[(non_included_key, Some(hex!("1010").to_vec()))],
			).is_err()
		);
	}

	#[test]
	fn proof_inclusion_works() {
		let pairs = vec![
			(hex!("0102").to_vec(), hex!("01").to_vec()),
			(hex!("0203").to_vec(), hex!("0405").to_vec()),
		];

		let mut memdb = MemoryDB::default();
		let mut root = Default::default();
		populate_trie::<Layout>(&mut memdb, &mut root, &pairs);

		let proof = generate_trie_proof::<Layout, _, _, _>(
			&memdb,
			root,
			&[pairs[0].0.clone()]
		).unwrap();

		// Check that a K, V included into the proof are verified.
		assert!(verify_trie_proof::<Layout, _, _, _>(
				&root,
				&proof,
				&[(pairs[0].0.clone(), Some(pairs[0].1.clone()))]
			).is_ok()
		);

		// Absence of the V is not verified with the proof that has K, V included.
		assert!(verify_trie_proof::<Layout, _, _, Vec<u8>>(
				&root,
				&proof,
				&[(pairs[0].0.clone(), None)]
			).is_err()
		);

		// K not included into the trie is not verified.
		assert!(verify_trie_proof::<Layout, _, _, _>(
				&root,
				&proof,
				&[(hex!("4242").to_vec(), Some(pairs[0].1.clone()))]
			).is_err()
		);

		// K included into the trie but not included into the proof is not verified.
		assert!(verify_trie_proof::<Layout, _, _, _>(
				&root,
				&proof,
				&[(pairs[1].0.clone(), Some(pairs[1].1.clone()))]
			).is_err()
		);
	}

	#[test]
	fn generate_storage_root_with_proof_works_independently_from_the_delta_order() {
		let proof = StorageProof::decode(&mut &include_bytes!("../test-res/proof")[..]).unwrap();
		let storage_root = sp_core::H256::decode(
			&mut &include_bytes!("../test-res/storage_root")[..],
		).unwrap();
		// Delta order that is "invalid" so that it would require a different proof.
		let invalid_delta = Vec::<(Vec<u8>, Option<Vec<u8>>)>::decode(
			&mut &include_bytes!("../test-res/invalid-delta-order")[..],
		).unwrap();
		// Delta order that is "valid"
		let valid_delta = Vec::<(Vec<u8>, Option<Vec<u8>>)>::decode(
			&mut &include_bytes!("../test-res/valid-delta-order")[..],
		).unwrap();

		let proof_db = proof.into_memory_db::<Blake2Hasher>();
		let first_storage_root = delta_trie_root::<Layout, _, _, _, _, _>(
			&mut proof_db.clone(),
			storage_root,
			valid_delta,
		).unwrap();
		let second_storage_root = delta_trie_root::<Layout, _, _, _, _, _>(
			&mut proof_db.clone(),
			storage_root,
			invalid_delta,
		).unwrap();

		assert_eq!(first_storage_root, second_storage_root);
	}
}