1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
use super::{Executor, SpawnError};
use std::cell::Cell;
use std::future::Future;
use std::pin::Pin;

/// Executes futures on the default executor for the current execution context.
///
/// `DefaultExecutor` implements `Executor` and can be used to spawn futures
/// without referencing a specific executor.
///
/// When an executor starts, it sets the `DefaultExecutor` handle to point to an
/// executor (usually itself) that is used to spawn new tasks.
///
/// The current `DefaultExecutor` reference is tracked using a thread-local
/// variable and is set using `tokio_executor::with_default`
#[derive(Debug, Clone)]
pub struct DefaultExecutor {
    _dummy: (),
}

impl DefaultExecutor {
    /// Returns a handle to the default executor for the current context.
    ///
    /// Futures may be spawned onto the default executor using this handle.
    ///
    /// The returned handle will reference whichever executor is configured as
    /// the default **at the time `spawn` is called**. This enables
    /// `DefaultExecutor::current()` to be called before an execution context is
    /// setup, then passed **into** an execution context before it is used.
    ///
    /// This is also true for sending the handle across threads, so calling
    /// `DefaultExecutor::current()` on thread A and then sending the result to
    /// thread B will _not_ reference the default executor that was set on thread A.
    pub fn current() -> DefaultExecutor {
        DefaultExecutor { _dummy: () }
    }

    #[inline]
    fn with_current<F: FnOnce(&mut dyn Executor) -> R, R>(f: F) -> Option<R> {
        EXECUTOR.with(
            |current_executor| match current_executor.replace(State::Active) {
                State::Ready(executor_ptr) => {
                    let executor = unsafe { &mut *executor_ptr };
                    let result = f(executor);
                    current_executor.set(State::Ready(executor_ptr));
                    Some(result)
                }
                State::Empty | State::Active => None,
            },
        )
    }
}

#[derive(Clone, Copy)]
enum State {
    // default executor not defined
    Empty,
    // default executor is defined and ready to be used
    Ready(*mut dyn Executor),
    // default executor is currently active (used to detect recursive calls)
    Active,
}

thread_local! {
    /// Thread-local tracking the current executor
    static EXECUTOR: Cell<State> = Cell::new(State::Empty)
}

// ===== impl DefaultExecutor =====

impl super::Executor for DefaultExecutor {
    fn spawn(
        &mut self,
        future: Pin<Box<dyn Future<Output = ()> + Send>>,
    ) -> Result<(), SpawnError> {
        DefaultExecutor::with_current(|executor| executor.spawn(future))
            .unwrap_or_else(|| Err(SpawnError::shutdown()))
    }

    fn status(&self) -> Result<(), SpawnError> {
        DefaultExecutor::with_current(|executor| executor.status())
            .unwrap_or_else(|| Err(SpawnError::shutdown()))
    }
}

impl<T> super::TypedExecutor<T> for DefaultExecutor
where
    T: Future<Output = ()> + Send + 'static,
{
    fn spawn(&mut self, future: T) -> Result<(), SpawnError> {
        super::Executor::spawn(self, Box::pin(future))
    }

    fn status(&self) -> Result<(), SpawnError> {
        super::Executor::status(self)
    }
}

// ===== global spawn fns =====

/// Submits a future for execution on the default executor -- usually a
/// threadpool.
///
/// Futures are lazy constructs. When they are defined, no work happens. In
/// order for the logic defined by the future to be run, the future must be
/// spawned on an executor. This function is the easiest way to do so.
///
/// This function must be called from an execution context, i.e. from a future
/// that has been already spawned onto an executor.
///
/// Once spawned, the future will execute. The details of how that happens is
/// left up to the executor instance. If the executor is a thread pool, the
/// future will be pushed onto a queue that a worker thread polls from. If the
/// executor is a "current thread" executor, the future might be polled
/// immediately from within the call to `spawn` or it might be pushed onto an
/// internal queue.
///
/// # Panics
///
/// This function will panic if the default executor is not set or if spawning
/// onto the default executor returns an error. To avoid the panic, use the
/// `DefaultExecutor` handle directly.
///
/// # Examples
///
/// ```no_run
/// tokio::spawn(async {
///     println!("running on the default executor");
/// });
/// ```
pub fn spawn<T>(future: T)
where
    T: Future<Output = ()> + Send + 'static,
{
    DefaultExecutor::current().spawn(Box::pin(future)).unwrap()
}

/// Set the default executor for the duration of the closure
///
/// If a default executor is already set, it will be restored when the closure returns or if it
/// panics.
pub fn with_default<T, F, R>(executor: &mut T, f: F) -> R
where
    T: Executor,
    F: FnOnce() -> R,
{
    EXECUTOR.with(|cell| {
        let was = cell.get();

        // Ensure that the executor is removed from the thread-local context
        // when leaving the scope. This handles cases that involve panicking.
        struct Reset<'a>(&'a Cell<State>, State);

        impl Drop for Reset<'_> {
            fn drop(&mut self) {
                self.0.set(self.1);
            }
        }

        let _reset = Reset(cell, was);

        // While scary, this is safe. The function takes a
        // `&mut Executor`, which guarantees that the reference lives for the
        // duration of `with_default`.
        //
        // Because we are always clearing the TLS value at the end of the
        // function, we can cast the reference to 'static which thread-local
        // cells require.
        let executor = unsafe { hide_lt(executor as &mut _ as *mut _) };

        cell.set(State::Ready(executor));

        f()
    })
}

unsafe fn hide_lt<'a>(p: *mut (dyn Executor + 'a)) -> *mut (dyn Executor + 'static) {
    use std::mem;
    // false positive: https://github.com/rust-lang/rust-clippy/issues/2906
    #[allow(clippy::transmute_ptr_to_ptr)]
    mem::transmute(p)
}

#[cfg(test)]
mod tests {
    use super::{with_default, DefaultExecutor, Executor};

    #[test]
    fn default_executor_is_send_and_sync() {
        fn assert_send_sync<T: Send + Sync>() {}

        assert_send_sync::<DefaultExecutor>();
    }

    #[test]
    fn nested_default_executor_status() {
        let _enter = super::super::enter().unwrap();
        let mut executor = DefaultExecutor::current();

        let result = with_default(&mut executor, || DefaultExecutor::current().status());

        assert!(result.err().unwrap().is_shutdown())
    }
}