1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
//! A procedural macro attribute for instrumenting functions with [`tracing`].
//!
//! [`tracing`] is a framework for instrumenting Rust programs to collect
//! structured, event-based diagnostic information. This crate provides the
//! [`#[instrument]`][instrument] procedural macro attribute.
//!
//! Note that this macro is also re-exported by the main `tracing` crate.
//!
//! *Compiler support: [requires `rustc` 1.42+][msrv]*
//!
//! [msrv]: #supported-rust-versions
//!
//! ## Usage
//!
//! First, add this to your `Cargo.toml`:
//!
//! ```toml
//! [dependencies]
//! tracing-attributes = "0.1.13"
//! ```
//!
//! The [`#[instrument]`][instrument] attribute can now be added to a function
//! to automatically create and enter `tracing` [span] when that function is
//! called. For example:
//!
//! ```
//! use tracing_attributes::instrument;
//!
//! #[instrument]
//! pub fn my_function(my_arg: usize) {
//!     // ...
//! }
//!
//! # fn main() {}
//! ```
//!
//! [`tracing`]: https://crates.io/crates/tracing
//! [span]: https://docs.rs/tracing/latest/tracing/span/index.html
//! [instrument]: attr.instrument.html
//!
//! ## Supported Rust Versions
//!
//! Tracing is built against the latest stable release. The minimum supported
//! version is 1.42. The current Tracing version is not guaranteed to build on
//! Rust versions earlier than the minimum supported version.
//!
//! Tracing follows the same compiler support policies as the rest of the Tokio
//! project. The current stable Rust compiler and the three most recent minor
//! versions before it will always be supported. For example, if the current
//! stable compiler version is 1.45, the minimum supported version will not be
//! increased past 1.42, three minor versions prior. Increasing the minimum
//! supported compiler version is not considered a semver breaking change as
//! long as doing so complies with this policy.
//!
#![doc(html_root_url = "https://docs.rs/tracing-attributes/0.1.13")]
#![doc(
    html_logo_url = "https://raw.githubusercontent.com/tokio-rs/tracing/master/assets/logo-type.png",
    issue_tracker_base_url = "https://github.com/tokio-rs/tracing/issues/"
)]
#![cfg_attr(docsrs, deny(broken_intra_doc_links))]
#![warn(
    missing_debug_implementations,
    missing_docs,
    rust_2018_idioms,
    unreachable_pub,
    bad_style,
    const_err,
    dead_code,
    improper_ctypes,
    non_shorthand_field_patterns,
    no_mangle_generic_items,
    overflowing_literals,
    path_statements,
    patterns_in_fns_without_body,
    private_in_public,
    unconditional_recursion,
    unused,
    unused_allocation,
    unused_comparisons,
    unused_parens,
    while_true
)]
// TODO: once `tracing` bumps its MSRV to 1.42, remove this allow.
#![allow(unused)]
extern crate proc_macro;

use std::collections::{HashMap, HashSet};
use std::iter;

use proc_macro2::TokenStream;
use quote::{quote, quote_spanned, ToTokens, TokenStreamExt as _};
use syn::ext::IdentExt as _;
use syn::parse::{Parse, ParseStream};
use syn::{
    punctuated::Punctuated, spanned::Spanned, AttributeArgs, Block, Expr, ExprCall, FieldPat,
    FnArg, Ident, Item, ItemFn, Lit, LitInt, LitStr, Meta, MetaList, MetaNameValue, NestedMeta,
    Pat, PatIdent, PatReference, PatStruct, PatTuple, PatTupleStruct, PatType, Path, Signature,
    Stmt, Token,
};
/// Instruments a function to create and enter a `tracing` [span] every time
/// the function is called.
///
/// By default, the generated span's [name] will be the name of the function,
/// the span's [target] will be the current module path, and the span's [level]
/// will be [`INFO`], although these properties can be overridden. Any arguments
/// to that function will be recorded as fields using [`fmt::Debug`].
///
/// # Overriding Span Attributes
///
/// To change the [name] of the generated span, add a `name` argument to the
/// `#[instrument]` macro, followed by an equals sign and a string literal. For
/// example:
///
/// ```
/// # use tracing_attributes::instrument;
///
/// // The generated span's name will be "my_span" rather than "my_function".
/// #[instrument(name = "my_span")]
/// pub fn my_function() {
///     // ... do something incredibly interesting and important ...
/// }
/// ```
///
/// To override the [target] of the generated span, add a `target` argument to
/// the `#[instrument]` macro, followed by an equals sign and a string literal
/// for the new target. The [module path] is still recorded separately. For
/// example:
///
/// ```
/// pub mod my_module {
///     # use tracing_attributes::instrument;
///     // The generated span's target will be "my_crate::some_special_target",
///     // rather than "my_crate::my_module".
///     #[instrument(target = "my_crate::some_special_target")]
///     pub fn my_function() {
///         // ... all kinds of neat code in here ...
///     }
/// }
/// ```
///
/// Finally, to override the [level] of the generated span, add a `level`
/// argument, followed by an equals sign and a string literal with the name of
/// the desired level. Level names are not case sensitive. For example:
///
/// ```
/// # use tracing_attributes::instrument;
/// // The span's level will be TRACE rather than INFO.
/// #[instrument(level = "trace")]
/// pub fn my_function() {
///     // ... I have written a truly marvelous implementation of this function,
///     // which this example is too narrow to contain ...
/// }
/// ```
///
/// # Skipping Fields
///
/// To skip recording one or more arguments to a function or method, pass
/// the argument's name inside the `skip()` argument on the `#[instrument]`
/// macro. This can be used when an argument to an instrumented function does
/// not implement [`fmt::Debug`], or to exclude an argument with a verbose or
/// costly `Debug` implementation. Note that:
///
/// - multiple argument names can be passed to `skip`.
/// - arguments passed to `skip` do _not_ need to implement `fmt::Debug`.
///
/// ## Examples
///
/// ```
/// # use tracing_attributes::instrument;
/// // This type doesn't implement `fmt::Debug`!
/// struct NonDebug;
///
/// // `arg` will be recorded, while `non_debug` will not.
/// #[instrument(skip(non_debug))]
/// fn my_function(arg: usize, non_debug: NonDebug) {
///     // ...
/// }
/// ```
///
/// Skipping the `self` parameter:
///
/// ```
/// # use tracing_attributes::instrument;
/// #[derive(Debug)]
/// struct MyType {
///    data: Vec<u8>, // Suppose this buffer is often quite long...
/// }
///
/// impl MyType {
///     // Suppose we don't want to print an entire kilobyte of `data`
///     // every time this is called...
///     #[instrument(skip(self))]
///     pub fn my_method(&mut self, an_interesting_argument: usize) {
///          // ... do something (hopefully, using all that `data`!)
///     }
/// }
/// ```
///
/// # Adding Fields
///
/// Additional fields (key-value pairs with arbitrary data) may be added to the
/// generated span using the `fields` argument on the `#[instrument]` macro. Any
/// Rust expression can be used as a field value in this manner. These
/// expressions will be evaluated at the beginning of the function's body, so
/// arguments to the function may be used in these expressions. Field names may
/// also be specified *without* values. Doing so will result in an [empty field]
/// whose value may be recorded later within the function body.
///
/// This supports the same [field syntax] as the `span!` and `event!` macros.
///
/// Note that overlap between the names of fields and (non-skipped) arguments
/// will result in a compile error.
///
/// ## Examples
///
/// Adding a new field based on the value of an argument:
///
/// ```
/// # use tracing_attributes::instrument;
///
/// // This will record a field named "i" with the value of `i` *and* a field
/// // named "next" with the value of `i` + 1.
/// #[instrument(fields(next = i + 1))]
/// pub fn my_function(i: usize) {
///     // ...
/// }
/// ```
///
/// Recording specific properties of a struct as their own fields:
///
/// ```
/// # mod http {
/// #   pub struct Error;
/// #   pub struct Response<B> { pub(super) _b: std::marker::PhantomData<B> }
/// #   pub struct Request<B> { _b: B }
/// #   impl<B> std::fmt::Debug for Request<B> {
/// #       fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
/// #           f.pad("request")
/// #       }
/// #   }
/// #   impl<B> Request<B> {
/// #       pub fn uri(&self) -> &str { "fake" }
/// #       pub fn method(&self) -> &str { "GET" }
/// #   }
/// # }
/// # use tracing_attributes::instrument;
///
/// // This will record the request's URI and HTTP method as their own separate
/// // fields.
/// #[instrument(fields(http.uri = req.uri(), http.method = req.method()))]
/// pub fn handle_request<B>(req: http::Request<B>) -> http::Response<B> {
///     // ... handle the request ...
///     # http::Response { _b: std::marker::PhantomData }
/// }
/// ```
///
/// This can be used in conjunction with `skip` to record only some fields of a
/// struct:
/// ```
/// # use tracing_attributes::instrument;
/// // Remember the struct with the very large `data` field from the earlier
/// // example? Now it also has a `name`, which we might want to include in
/// // our span.
/// #[derive(Debug)]
/// struct MyType {
///    name: &'static str,
///    data: Vec<u8>,
/// }
///
/// impl MyType {
///     // This will skip the `data` field, but will include `self.name`,
///     // formatted using `fmt::Display`.
///     #[instrument(skip(self), fields(self.name = %self.name))]
///     pub fn my_method(&mut self, an_interesting_argument: usize) {
///          // ... do something (hopefully, using all that `data`!)
///     }
/// }
/// ```
///
/// Adding an empty field to be recorded later:
///
/// ```
/// # use tracing_attributes::instrument;
///
/// // This function does a very interesting and important mathematical calculation.
/// // Suppose we want to record both the inputs to the calculation *and* its result...
/// #[instrument(fields(result))]
/// pub fn do_calculation(input_1: usize, input_2: usize) -> usize {
///     // Rerform the calculation.
///     let result = input_1 + input_2;
///
///     // Record the result as part of the current span.
///     tracing::Span::current().record("result", &result);
///
///     // Now, the result will also be included on this event!
///     tracing::info!("calculation complete!");
///
///     // ... etc ...
///     # 0
/// }
/// ```
///
/// # Examples
///
/// Instrumenting a function:
///
/// ```
/// # use tracing_attributes::instrument;
/// #[instrument]
/// pub fn my_function(my_arg: usize) {
///     // This event will be recorded inside a span named `my_function` with the
///     // field `my_arg`.
///     tracing::info!("inside my_function!");
///     // ...
/// }
/// ```
/// Setting the level for the generated span:
/// ```
/// # use tracing_attributes::instrument;
/// #[instrument(level = "debug")]
/// pub fn my_function() {
///     // ...
/// }
/// ```
/// Overriding the generated span's name:
/// ```
/// # use tracing_attributes::instrument;
/// #[instrument(name = "my_name")]
/// pub fn my_function() {
///     // ...
/// }
/// ```
/// Overriding the generated span's target:
/// ```
/// # use tracing_attributes::instrument;
/// #[instrument(target = "my_target")]
/// pub fn my_function() {
///     // ...
/// }
/// ```
///
/// To skip recording an argument, pass the argument's name to the `skip`:
///
/// ```
/// # use tracing_attributes::instrument;
/// struct NonDebug;
///
/// #[instrument(skip(non_debug))]
/// fn my_function(arg: usize, non_debug: NonDebug) {
///     // ...
/// }
/// ```
///
/// To add an additional context to the span, pass key-value pairs to `fields`:
///
/// ```
/// # use tracing_attributes::instrument;
/// #[instrument(fields(foo="bar", id=1, show=true))]
/// fn my_function(arg: usize) {
///     // ...
/// }
/// ```
///
/// If the function returns a `Result<T, E>` and `E` implements `std::fmt::Display`, you can add
/// `err` to emit error events when the function returns `Err`:
///
/// ```
/// # use tracing_attributes::instrument;
/// #[instrument(err)]
/// fn my_function(arg: usize) -> Result<(), std::io::Error> {
///     Ok(())
/// }
/// ```
///
/// `async fn`s may also be instrumented:
///
/// ```
/// # use tracing_attributes::instrument;
/// #[instrument]
/// pub async fn my_function() -> Result<(), ()> {
///     // ...
///     # Ok(())
/// }
/// ```
///
/// It also works with [async-trait](https://crates.io/crates/async-trait)
/// (a crate that allows defining async functions in traits,
/// something not currently possible in Rust),
/// and hopefully most libraries that exhibit similar behaviors:
///
/// ```
/// # use tracing::instrument;
/// use async_trait::async_trait;
///
/// #[async_trait]
/// pub trait Foo {
///     async fn foo(&self, arg: usize);
/// }
///
/// #[derive(Debug)]
/// struct FooImpl(usize);
///
/// #[async_trait]
/// impl Foo for FooImpl {
///     #[instrument(fields(value = self.0, tmp = std::any::type_name::<Self>()))]
///     async fn foo(&self, arg: usize) {}
/// }
/// ```
///
/// An interesting note on this subject is that references to the `Self`
/// type inside the `fields` argument are only allowed when the instrumented
/// function is a method aka. the function receives `self` as an argument.
/// For example, this *will not work* because it doesn't receive `self`:
/// ```compile_fail
/// # use tracing::instrument;
/// use async_trait::async_trait;
///
/// #[async_trait]
/// pub trait Bar {
///     async fn bar();
/// }
///
/// #[derive(Debug)]
/// struct BarImpl(usize);
///
/// #[async_trait]
/// impl Bar for BarImpl {
///     #[instrument(fields(tmp = std::any::type_name::<Self>()))]
///     async fn bar() {}
/// }
/// ```
/// Instead, you should manually rewrite any `Self` types as the type for
/// which you implement the trait: `#[instrument(fields(tmp = std::any::type_name::<Bar>()))]`.
///
/// [span]: https://docs.rs/tracing/latest/tracing/span/index.html
/// [name]: https://docs.rs/tracing/latest/tracing/struct.Metadata.html#method.name
/// [target]: https://docs.rs/tracing/latest/tracing/struct.Metadata.html#method.target
/// [level]: https://docs.rs/tracing/latest/tracing/struct.Level.html
/// [module path]: https://docs.rs/tracing/latest/tracing/struct.Metadata.html#method.module_path
/// [`INFO`]: https://docs.rs/tracing/latest/tracing/struct.Level.html#associatedconstant.INFO
/// [empty field]: https://docs.rs/tracing/latest/tracing/field/struct.Empty.html
/// [field syntax]: https://docs.rs/tracing/latest/tracing/#recording-fields
/// [`fmt::Debug`]: https://doc.rust-lang.org/std/fmt/trait.Debug.html
#[proc_macro_attribute]
pub fn instrument(
    args: proc_macro::TokenStream,
    item: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
    let input: ItemFn = syn::parse_macro_input!(item as ItemFn);
    let args = syn::parse_macro_input!(args as InstrumentArgs);

    let instrumented_function_name = input.sig.ident.to_string();

    // check for async_trait-like patterns in the block and wrap the
    // internal function with Instrument instead of wrapping the
    // async_trait generated wrapper
    if let Some(internal_fun) = get_async_trait_info(&input.block, input.sig.asyncness.is_some()) {
        // let's rewrite some statements!
        let mut stmts: Vec<Stmt> = input.block.stmts.to_vec();
        for stmt in &mut stmts {
            if let Stmt::Item(Item::Fn(fun)) = stmt {
                // instrument the function if we considered it as the one we truly want to trace
                if fun.sig.ident == internal_fun.name {
                    *stmt = syn::parse2(gen_body(
                        fun,
                        args,
                        instrumented_function_name,
                        Some(internal_fun),
                    ))
                    .unwrap();
                    break;
                }
            }
        }

        let vis = &input.vis;
        let sig = &input.sig;
        let attrs = &input.attrs;
        quote!(
            #(#attrs) *
            #vis #sig {
                #(#stmts) *
            }
        )
        .into()
    } else {
        gen_body(&input, args, instrumented_function_name, None).into()
    }
}

fn gen_body(
    input: &ItemFn,
    mut args: InstrumentArgs,
    instrumented_function_name: String,
    async_trait_fun: Option<AsyncTraitInfo>,
) -> proc_macro2::TokenStream {
    // these are needed ahead of time, as ItemFn contains the function body _and_
    // isn't representable inside a quote!/quote_spanned! macro
    // (Syn's ToTokens isn't implemented for ItemFn)
    let ItemFn {
        attrs,
        vis,
        block,
        sig,
        ..
    } = input;

    let Signature {
        output: return_type,
        inputs: params,
        unsafety,
        asyncness,
        constness,
        abi,
        ident,
        generics:
            syn::Generics {
                params: gen_params,
                where_clause,
                ..
            },
        ..
    } = sig;

    let err = args.err;
    let warnings = args.warnings();

    // generate the span's name
    let span_name = args
        // did the user override the span's name?
        .name
        .as_ref()
        .map(|name| quote!(#name))
        .unwrap_or_else(|| quote!(#instrumented_function_name));

    // generate this inside a closure, so we can return early on errors.
    let span = (|| {
        // Pull out the arguments-to-be-skipped first, so we can filter results
        // below.
        let param_names: Vec<(Ident, Ident)> = params
            .clone()
            .into_iter()
            .flat_map(|param| match param {
                FnArg::Typed(PatType { pat, .. }) => param_names(*pat),
                FnArg::Receiver(_) => Box::new(iter::once(Ident::new("self", param.span()))),
            })
            // Little dance with new (user-exposed) names and old (internal)
            // names of identifiers. That way, you can do the following
            // even though async_trait rewrite "self" as "_self":
            // ```
            // #[async_trait]
            // impl Foo for FooImpl {
            //     #[instrument(skip(self))]
            //     async fn foo(&self, v: usize) {}
            // }
            // ```
            .map(|x| {
                // if we are inside a function generated by async-trait, we
                // should take care to rewrite "_self" as "self" for
                // 'user convenience'
                if async_trait_fun.is_some() && x == "_self" {
                    (Ident::new("self", x.span()), x)
                } else {
                    (x.clone(), x)
                }
            })
            .collect();

        for skip in &args.skips {
            if !param_names.iter().map(|(user, _)| user).any(|y| y == skip) {
                return quote_spanned! {skip.span()=>
                    compile_error!("attempting to skip non-existent parameter")
                };
            }
        }

        let level = args.level();
        let target = args.target();

        // filter out skipped fields
        let mut quoted_fields: Vec<_> = param_names
            .into_iter()
            .filter(|(param, _)| {
                if args.skips.contains(param) {
                    return false;
                }

                // If any parameters have the same name as a custom field, skip
                // and allow them to be formatted by the custom field.
                if let Some(ref fields) = args.fields {
                    fields.0.iter().all(|Field { ref name, .. }| {
                        let first = name.first();
                        first != name.last() || !first.iter().any(|name| name == &param)
                    })
                } else {
                    true
                }
            })
            .map(|(user_name, real_name)| quote!(#user_name = tracing::field::debug(&#real_name)))
            .collect();

        // when async-trait is in use, replace instances of "self" with "_self" inside the fields values
        if let (Some(ref async_trait_fun), Some(Fields(ref mut fields))) =
            (async_trait_fun, &mut args.fields)
        {
            let mut replacer = SelfReplacer {
                ty: async_trait_fun.self_type.clone(),
            };
            for e in fields.iter_mut().filter_map(|f| f.value.as_mut()) {
                syn::visit_mut::visit_expr_mut(&mut replacer, e);
            }
        }

        let custom_fields = &args.fields;

        quote!(tracing::span!(
            target: #target,
            #level,
            #span_name,
            #(#quoted_fields,)*
            #custom_fields

        ))
    })();

    // Generate the instrumented function body.
    // If the function is an `async fn`, this will wrap it in an async block,
    // which is `instrument`ed using `tracing-futures`. Otherwise, this will
    // enter the span and then perform the rest of the body.
    // If `err` is in args, instrument any resulting `Err`s.
    let body = if asyncness.is_some() {
        if err {
            quote_spanned! {block.span()=>
                let __tracing_attr_span = #span;
                tracing::Instrument::instrument(async move {
                    match async move { #block }.await {
                        #[allow(clippy::unit_arg)]
                        Ok(x) => Ok(x),
                        Err(e) => {
                            tracing::error!(error = %e);
                            Err(e)
                        }
                    }
                }, __tracing_attr_span).await
            }
        } else {
            quote_spanned!(block.span()=>
                let __tracing_attr_span = #span;
                    tracing::Instrument::instrument(
                        async move { #block },
                        __tracing_attr_span
                    )
                    .await
            )
        }
    } else if err {
        quote_spanned!(block.span()=>
            let __tracing_attr_span = #span;
            let __tracing_attr_guard = __tracing_attr_span.enter();
            #[allow(clippy::redundant_closure_call)]
            match (move || #block)() {
                #[allow(clippy::unit_arg)]
                Ok(x) => Ok(x),
                Err(e) => {
                    tracing::error!(error = %e);
                    Err(e)
                }
            }
        )
    } else {
        quote_spanned!(block.span()=>
            let __tracing_attr_span = #span;
            let __tracing_attr_guard = __tracing_attr_span.enter();
            #block
        )
    };

    quote!(
        #(#attrs) *
        #vis #constness #unsafety #asyncness #abi fn #ident<#gen_params>(#params) #return_type
        #where_clause
        {
            #warnings
            #body
        }
    )
}

#[derive(Default, Debug)]
struct InstrumentArgs {
    level: Option<Level>,
    name: Option<LitStr>,
    target: Option<LitStr>,
    skips: HashSet<Ident>,
    fields: Option<Fields>,
    err: bool,
    /// Errors describing any unrecognized parse inputs that we skipped.
    parse_warnings: Vec<syn::Error>,
}

impl InstrumentArgs {
    fn level(&self) -> impl ToTokens {
        fn is_level(lit: &LitInt, expected: u64) -> bool {
            match lit.base10_parse::<u64>() {
                Ok(value) => value == expected,
                Err(_) => false,
            }
        }

        match &self.level {
            Some(Level::Str(ref lit)) if lit.value().eq_ignore_ascii_case("trace") => {
                quote!(tracing::Level::TRACE)
            }
            Some(Level::Str(ref lit)) if lit.value().eq_ignore_ascii_case("debug") => {
                quote!(tracing::Level::DEBUG)
            }
            Some(Level::Str(ref lit)) if lit.value().eq_ignore_ascii_case("info") => {
                quote!(tracing::Level::INFO)
            }
            Some(Level::Str(ref lit)) if lit.value().eq_ignore_ascii_case("warn") => {
                quote!(tracing::Level::WARN)
            }
            Some(Level::Str(ref lit)) if lit.value().eq_ignore_ascii_case("error") => {
                quote!(tracing::Level::ERROR)
            }
            Some(Level::Int(ref lit)) if is_level(lit, 1) => quote!(tracing::Level::TRACE),
            Some(Level::Int(ref lit)) if is_level(lit, 2) => quote!(tracing::Level::DEBUG),
            Some(Level::Int(ref lit)) if is_level(lit, 3) => quote!(tracing::Level::INFO),
            Some(Level::Int(ref lit)) if is_level(lit, 4) => quote!(tracing::Level::WARN),
            Some(Level::Int(ref lit)) if is_level(lit, 5) => quote!(tracing::Level::ERROR),
            Some(Level::Path(ref pat)) => quote!(#pat),
            Some(lit) => quote! {
                compile_error!(
                    "unknown verbosity level, expected one of \"trace\", \
                     \"debug\", \"info\", \"warn\", or \"error\", or a number 1-5"
                )
            },
            None => quote!(tracing::Level::INFO),
        }
    }

    fn target(&self) -> impl ToTokens {
        if let Some(ref target) = self.target {
            quote!(#target)
        } else {
            quote!(module_path!())
        }
    }

    /// Generate "deprecation" warnings for any unrecognized attribute inputs
    /// that we skipped.
    ///
    /// For backwards compatibility, we need to emit compiler warnings rather
    /// than errors for unrecognized inputs. Generating a fake deprecation is
    /// the only way to do this on stable Rust right now.
    fn warnings(&self) -> impl ToTokens {
        let warnings = self.parse_warnings.iter().map(|err| {
            let msg = format!("found unrecognized input, {}", err);
            let msg = LitStr::new(&msg, err.span());
            // TODO(eliza): This is a bit of a hack, but it's just about the
            // only way to emit warnings from a proc macro on stable Rust.
            // Eventually, when the `proc_macro::Diagnostic` API stabilizes, we
            // should definitely use that instead.
            quote_spanned! {err.span()=>
                #[warn(deprecated)]
                {
                    #[deprecated(since = "not actually deprecated", note = #msg)]
                    const TRACING_INSTRUMENT_WARNING: () = ();
                    let _ = TRACING_INSTRUMENT_WARNING;
                }
            }
        });
        quote! {
            { #(#warnings)* }
        }
    }
}

impl Parse for InstrumentArgs {
    fn parse(input: ParseStream<'_>) -> syn::Result<Self> {
        let mut args = Self::default();
        while !input.is_empty() {
            let lookahead = input.lookahead1();
            if lookahead.peek(kw::name) {
                if args.name.is_some() {
                    return Err(input.error("expected only a single `name` argument"));
                }
                let name = input.parse::<StrArg<kw::name>>()?.value;
                args.name = Some(name);
            } else if lookahead.peek(LitStr) {
                // XXX: apparently we support names as either named args with an
                // sign, _or_ as unnamed string literals. That's weird, but
                // changing it is apparently breaking.
                if args.name.is_some() {
                    return Err(input.error("expected only a single `name` argument"));
                }
                args.name = Some(input.parse()?);
            } else if lookahead.peek(kw::target) {
                if args.target.is_some() {
                    return Err(input.error("expected only a single `target` argument"));
                }
                let target = input.parse::<StrArg<kw::target>>()?.value;
                args.target = Some(target);
            } else if lookahead.peek(kw::level) {
                if args.level.is_some() {
                    return Err(input.error("expected only a single `level` argument"));
                }
                args.level = Some(input.parse()?);
            } else if lookahead.peek(kw::skip) {
                if !args.skips.is_empty() {
                    return Err(input.error("expected only a single `skip` argument"));
                }
                let Skips(skips) = input.parse()?;
                args.skips = skips;
            } else if lookahead.peek(kw::fields) {
                if args.fields.is_some() {
                    return Err(input.error("expected only a single `fields` argument"));
                }
                args.fields = Some(input.parse()?);
            } else if lookahead.peek(kw::err) {
                let _ = input.parse::<kw::err>()?;
                args.err = true;
            } else if lookahead.peek(Token![,]) {
                let _ = input.parse::<Token![,]>()?;
            } else {
                // We found a token that we didn't expect!
                // We want to emit warnings for these, rather than errors, so
                // we'll add it to the list of unrecognized inputs we've seen so
                // far and keep going.
                args.parse_warnings.push(lookahead.error());
                // Parse the unrecognized token tree to advance the parse
                // stream, and throw it away so we can keep parsing.
                let _ = input.parse::<proc_macro2::TokenTree>();
            }
        }
        Ok(args)
    }
}

struct StrArg<T> {
    value: LitStr,
    _p: std::marker::PhantomData<T>,
}

impl<T: Parse> Parse for StrArg<T> {
    fn parse(input: ParseStream<'_>) -> syn::Result<Self> {
        let _ = input.parse::<T>()?;
        let _ = input.parse::<Token![=]>()?;
        let value = input.parse()?;
        Ok(Self {
            value,
            _p: std::marker::PhantomData,
        })
    }
}

struct Skips(HashSet<Ident>);

impl Parse for Skips {
    fn parse(input: ParseStream<'_>) -> syn::Result<Self> {
        let _ = input.parse::<kw::skip>();
        let content;
        let _ = syn::parenthesized!(content in input);
        let names: Punctuated<Ident, Token![,]> = content.parse_terminated(Ident::parse_any)?;
        let mut skips = HashSet::new();
        for name in names {
            if skips.contains(&name) {
                return Err(syn::Error::new(
                    name.span(),
                    "tried to skip the same field twice",
                ));
            } else {
                skips.insert(name);
            }
        }
        Ok(Self(skips))
    }
}

#[derive(Debug)]
struct Fields(Punctuated<Field, Token![,]>);

#[derive(Debug)]
struct Field {
    name: Punctuated<Ident, Token![.]>,
    value: Option<Expr>,
    kind: FieldKind,
}

#[derive(Debug, Eq, PartialEq)]
enum FieldKind {
    Debug,
    Display,
    Value,
}

impl Parse for Fields {
    fn parse(input: ParseStream<'_>) -> syn::Result<Self> {
        let _ = input.parse::<kw::fields>();
        let content;
        let _ = syn::parenthesized!(content in input);
        let fields: Punctuated<_, Token![,]> = content.parse_terminated(Field::parse)?;
        Ok(Self(fields))
    }
}

impl ToTokens for Fields {
    fn to_tokens(&self, tokens: &mut TokenStream) {
        self.0.to_tokens(tokens)
    }
}

impl Parse for Field {
    fn parse(input: ParseStream<'_>) -> syn::Result<Self> {
        let mut kind = FieldKind::Value;
        if input.peek(Token![%]) {
            input.parse::<Token![%]>()?;
            kind = FieldKind::Display;
        } else if input.peek(Token![?]) {
            input.parse::<Token![?]>()?;
            kind = FieldKind::Debug;
        };
        let name = Punctuated::parse_separated_nonempty_with(input, Ident::parse_any)?;
        let value = if input.peek(Token![=]) {
            input.parse::<Token![=]>()?;
            if input.peek(Token![%]) {
                input.parse::<Token![%]>()?;
                kind = FieldKind::Display;
            } else if input.peek(Token![?]) {
                input.parse::<Token![?]>()?;
                kind = FieldKind::Debug;
            };
            Some(input.parse()?)
        } else {
            None
        };
        Ok(Self { name, kind, value })
    }
}

impl ToTokens for Field {
    fn to_tokens(&self, tokens: &mut TokenStream) {
        if let Some(ref value) = self.value {
            let name = &self.name;
            let kind = &self.kind;
            tokens.extend(quote! {
                #name = #kind#value
            })
        } else if self.kind == FieldKind::Value {
            // XXX(eliza): I don't like that fields without values produce
            // empty fields rather than local variable shorthand...but,
            // we've released a version where field names without values in
            // `instrument` produce empty field values, so changing it now
            // is a breaking change. agh.
            let name = &self.name;
            tokens.extend(quote!(#name = tracing::field::Empty))
        } else {
            self.kind.to_tokens(tokens);
            self.name.to_tokens(tokens);
        }
    }
}

impl ToTokens for FieldKind {
    fn to_tokens(&self, tokens: &mut TokenStream) {
        match self {
            FieldKind::Debug => tokens.extend(quote! { ? }),
            FieldKind::Display => tokens.extend(quote! { % }),
            _ => {}
        }
    }
}

#[derive(Debug)]
enum Level {
    Str(LitStr),
    Int(LitInt),
    Path(Path),
}

impl Parse for Level {
    fn parse(input: ParseStream<'_>) -> syn::Result<Self> {
        let _ = input.parse::<kw::level>()?;
        let _ = input.parse::<Token![=]>()?;
        let lookahead = input.lookahead1();
        if lookahead.peek(LitStr) {
            Ok(Self::Str(input.parse()?))
        } else if lookahead.peek(LitInt) {
            Ok(Self::Int(input.parse()?))
        } else if lookahead.peek(Ident) {
            Ok(Self::Path(input.parse()?))
        } else {
            Err(lookahead.error())
        }
    }
}

fn param_names(pat: Pat) -> Box<dyn Iterator<Item = Ident>> {
    match pat {
        Pat::Ident(PatIdent { ident, .. }) => Box::new(iter::once(ident)),
        Pat::Reference(PatReference { pat, .. }) => param_names(*pat),
        Pat::Struct(PatStruct { fields, .. }) => Box::new(
            fields
                .into_iter()
                .flat_map(|FieldPat { pat, .. }| param_names(*pat)),
        ),
        Pat::Tuple(PatTuple { elems, .. }) => Box::new(elems.into_iter().flat_map(param_names)),
        Pat::TupleStruct(PatTupleStruct {
            pat: PatTuple { elems, .. },
            ..
        }) => Box::new(elems.into_iter().flat_map(param_names)),

        // The above *should* cover all cases of irrefutable patterns,
        // but we purposefully don't do any funny business here
        // (such as panicking) because that would obscure rustc's
        // much more informative error message.
        _ => Box::new(iter::empty()),
    }
}

mod kw {
    syn::custom_keyword!(fields);
    syn::custom_keyword!(skip);
    syn::custom_keyword!(level);
    syn::custom_keyword!(target);
    syn::custom_keyword!(name);
    syn::custom_keyword!(err);
}

// Get the AST of the inner function we need to hook, if it was generated
// by async-trait.
// When we are given a function annotated by async-trait, that function
// is only a placeholder that returns a pinned future containing the
// user logic, and it is that pinned future that needs to be instrumented.
// Were we to instrument its parent, we would only collect information
// regarding the allocation of that future, and not its own span of execution.
// So we inspect the block of the function to find if it matches the pattern
// `async fn foo<...>(...) {...}; Box::pin(foo<...>(...))` and we return
// the name `foo` if that is the case. 'gen_body' will then be able
// to use that information to instrument the proper function.
// (this follows the approach suggested in
// https://github.com/dtolnay/async-trait/issues/45#issuecomment-571245673)
fn get_async_trait_function(block: &Block, block_is_async: bool) -> Option<&ItemFn> {
    // are we in an async context? If yes, this isn't a async_trait-like pattern
    if block_is_async {
        return None;
    }

    // list of async functions declared inside the block
    let mut inside_funs = Vec::new();
    // last expression declared in the block (it determines the return
    // value of the block, so that if we are working on a function
    // whose `trait` or `impl` declaration is annotated by async_trait,
    // this is quite likely the point where the future is pinned)
    let mut last_expr = None;

    // obtain the list of direct internal functions and the last
    // expression of the block
    for stmt in &block.stmts {
        if let Stmt::Item(Item::Fn(fun)) = &stmt {
            // is the function declared as async? If so, this is a good
            // candidate, let's keep it in hand
            if fun.sig.asyncness.is_some() {
                inside_funs.push(fun);
            }
        } else if let Stmt::Expr(e) = &stmt {
            last_expr = Some(e);
        }
    }

    // let's play with (too much) pattern matching
    // is the last expression a function call?
    if let Some(Expr::Call(ExprCall {
        func: outside_func,
        args: outside_args,
        ..
    })) = last_expr
    {
        if let Expr::Path(path) = outside_func.as_ref() {
            // is it a call to `Box::pin()`?
            if "Box::pin" == path_to_string(&path.path) {
                // does it takes at least an argument? (if it doesn't,
                // it's not gonna compile anyway, but that's no reason
                // to (try to) perform an out of bounds access)
                if outside_args.is_empty() {
                    return None;
                }
                // is the argument to Box::pin a function call itself?
                if let Expr::Call(ExprCall { func, args, .. }) = &outside_args[0] {
                    if let Expr::Path(inside_path) = func.as_ref() {
                        // "stringify" the path of the function called
                        let func_name = path_to_string(&inside_path.path);
                        // is this function directly defined insided the current block?
                        for fun in inside_funs {
                            if fun.sig.ident == func_name {
                                // we must hook this function now
                                return Some(fun);
                            }
                        }
                    }
                }
            }
        }
    }
    None
}

struct AsyncTraitInfo {
    name: String,
    self_type: Option<syn::TypePath>,
}

// Return the informations necessary to process a function annotated with async-trait.
fn get_async_trait_info(block: &Block, block_is_async: bool) -> Option<AsyncTraitInfo> {
    let fun = get_async_trait_function(block, block_is_async)?;

    // if "_self" is present as an argument, we store its type to be able to rewrite "Self" (the
    // parameter type) with the type of "_self"
    let self_type = fun
        .sig
        .inputs
        .iter()
        .map(|arg| {
            if let FnArg::Typed(ty) = arg {
                if let Pat::Ident(PatIdent { ident, .. }) = &*ty.pat {
                    if ident == "_self" {
                        let mut ty = &*ty.ty;
                        // extract the inner type if the argument is "&self" or "&mut self"
                        if let syn::Type::Reference(syn::TypeReference { elem, .. }) = ty {
                            ty = &*elem;
                        }
                        if let syn::Type::Path(tp) = ty {
                            return Some(tp.clone());
                        }
                    }
                }
            }

            None
        })
        .next();
    let self_type = match self_type {
        Some(x) => x,
        None => None,
    };

    Some(AsyncTraitInfo {
        name: fun.sig.ident.to_string(),
        self_type,
    })
}

// Return a path as a String
fn path_to_string(path: &Path) -> String {
    use std::fmt::Write;
    // some heuristic to prevent too many allocations
    let mut res = String::with_capacity(path.segments.len() * 5);
    for i in 0..path.segments.len() {
        write!(&mut res, "{}", path.segments[i].ident)
            .expect("writing to a String should never fail");
        if i < path.segments.len() - 1 {
            res.push_str("::");
        }
    }
    res
}

// A visitor struct replacing the "self" and "Self" tokens in user-supplied fields expressions when
// the function is generated by async-trait.
struct SelfReplacer {
    ty: Option<syn::TypePath>,
}

impl syn::visit_mut::VisitMut for SelfReplacer {
    fn visit_ident_mut(&mut self, id: &mut Ident) {
        if id == "self" {
            *id = Ident::new("_self", id.span())
        }
    }

    fn visit_type_mut(&mut self, ty: &mut syn::Type) {
        if let syn::Type::Path(syn::TypePath { ref mut path, .. }) = ty {
            if path_to_string(path) == "Self" {
                if let Some(ref true_type) = self.ty {
                    *path = true_type.path.clone();
                }
            }
        }
    }
}