1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
// Copyright 2017, 2018 Parity Technologies
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Nibble-orientated view onto byte-slice, allowing nibble-precision offsets.

use crate::rstd::{cmp::*, fmt};
use super::{nibble_ops, NibbleSlice, NibbleSliceIterator, BackingByteVec};
use crate::node::NodeKey;
use crate::node_codec::Partial;
use hash_db::Prefix;

impl<'a> Iterator for NibbleSliceIterator<'a> {
	type Item = u8;
	fn next(&mut self) -> Option<u8> {
		self.i += 1;
		match self.i <= self.p.len() {
			true => Some(self.p.at(self.i - 1)),
			false => None,
		}
	}
}

impl<'a> NibbleSlice<'a> {
	/// Create a new nibble slice with the given byte-slice.
	pub fn new(data: &'a [u8]) -> Self { NibbleSlice::new_slice(data, 0) }

	/// Create a new nibble slice with the given byte-slice with a nibble offset.
	pub fn new_offset(data: &'a [u8], offset: usize) -> Self {
		Self::new_slice(data, offset)
	}

	fn new_slice(data: &'a [u8], offset: usize) -> Self {
		NibbleSlice {
			data,
			offset,
		}
	}

	/// Get an iterator for the series of nibbles.
	pub fn iter(&'a self) -> NibbleSliceIterator<'a> {
		NibbleSliceIterator { p: self, i: 0 }
	}

	/// Get nibble slice from a `NodeKey`.
	pub fn from_stored(i: &NodeKey) -> NibbleSlice {
		NibbleSlice::new_offset(&i.1[..], i.0)
	}

	/// Helper function to create a owned `NodeKey` from this `NibbleSlice`.
	pub fn to_stored(&self) -> NodeKey {
		let split = self.offset / nibble_ops::NIBBLE_PER_BYTE;
		let offset = self.offset % nibble_ops::NIBBLE_PER_BYTE;
		(offset, self.data[split..].into())
	}

	/// Helper function to create a owned `NodeKey` from this `NibbleSlice`,
	/// and for a given number of nibble.
	/// Warning this method can be slow (number of nibble does not align the
	/// original padding).
	pub fn to_stored_range(&self, nb: usize) -> NodeKey {
		if nb >= self.len() { return self.to_stored() }
		if (self.offset + nb) % nibble_ops::NIBBLE_PER_BYTE == 0 {
			// aligned
			let start = self.offset / nibble_ops::NIBBLE_PER_BYTE;
			let end = (self.offset + nb) / nibble_ops::NIBBLE_PER_BYTE;
			(
				self.offset % nibble_ops::NIBBLE_PER_BYTE,
				BackingByteVec::from_slice(&self.data[start..end]),
			)
		} else {
			// unaligned
			let start = self.offset / nibble_ops::NIBBLE_PER_BYTE;
			let end = (self.offset + nb) / nibble_ops::NIBBLE_PER_BYTE;
			let ea = BackingByteVec::from_slice(&self.data[start..=end]);
			let ea_offset = self.offset % nibble_ops::NIBBLE_PER_BYTE;
			let n_offset = nibble_ops::number_padding(nb);
			let mut result = (ea_offset, ea);
			nibble_ops::shift_key(&mut result, n_offset);
			result.1.pop();
			result
		}
	}

	/// Return true if the slice contains no nibbles.
	pub fn is_empty(&self) -> bool { self.len() == 0 }

	/// Get the length (in nibbles, naturally) of this slice.
	#[inline]
	pub fn len(&self) -> usize { self.data.len() * nibble_ops::NIBBLE_PER_BYTE - self.offset }

	/// Get the nibble at position `i`.
	#[inline(always)]
	pub fn at(&self, i: usize) -> u8 {
		nibble_ops::at(&self, i)
	}

	/// Return object which represents a view on to this slice (further) offset by `i` nibbles.
	pub fn mid(&self, i: usize) -> NibbleSlice<'a> {
		NibbleSlice {
			data: self.data,
			offset: self.offset + i,
		}
	}

	/// Advance the view on the slice by `i` nibbles.
	pub fn advance(&mut self, i: usize) {
		debug_assert!(self.len() >= i);
		self.offset += i;
	}

	/// Move back to a previously valid fix offset position.
	pub fn back(&self, i: usize) -> NibbleSlice<'a> {
		NibbleSlice {
			data: self.data,
			offset: i,
		}
	}

	/// Do we start with the same nibbles as the whole of `them`?
	pub fn starts_with(&self, them: &Self) -> bool { self.common_prefix(them) == them.len() }

	/// How many of the same nibbles at the beginning do we match with `them`?
	pub fn common_prefix(&self, them: &Self) -> usize {
		let s = min(self.len(), them.len());
		let mut i = 0usize;
		while i < s {
			if self.at(i) != them.at(i) { break; }
			i += 1;
		}
		i
	}

	/// Return `Partial` representation of this slice:
	/// first encoded byte and following slice.
	pub fn right(&'a self) -> Partial {
		let split = self.offset / nibble_ops::NIBBLE_PER_BYTE;
		let nb = (self.len() % nibble_ops::NIBBLE_PER_BYTE) as u8;
		if nb > 0 {
			((nb, nibble_ops::pad_right(self.data[split])), &self.data[split + 1 ..])
		} else {
			((0, 0), &self.data[split..])
		}
	}

	/// Return an iterator over `Partial` bytes representation.
	pub fn right_iter(&'a self) -> impl Iterator<Item = u8> + 'a {
		let (mut first, sl) = self.right();
		let mut ix = 0;
		crate::rstd::iter::from_fn(move || {
			if first.0 > 0 {
				first.0 = 0;
				Some(nibble_ops::pad_right(first.1))
			} else if ix < sl.len() {
				ix += 1;
				Some(sl[ix - 1])
			} else {
				None
			}
		})
	}

	/// Return `Partial` bytes iterator over a range of byte..
	/// Warning can be slow when unaligned (similar to `to_stored_range`).
	pub fn right_range_iter(&'a self, to: usize) -> impl Iterator<Item = u8> + 'a {
		let mut nib_res = to % nibble_ops::NIBBLE_PER_BYTE;
		let aligned_i = (self.offset + to) % nibble_ops::NIBBLE_PER_BYTE;
		let aligned = aligned_i == 0;
		let mut ix = self.offset / nibble_ops::NIBBLE_PER_BYTE;
		let ix_lim = (self.offset + to) / nibble_ops::NIBBLE_PER_BYTE;
		crate::rstd::iter::from_fn( move || {
			if aligned {
				if nib_res > 0 {
					let v = nibble_ops::pad_right(self.data[ix]);
					nib_res = 0;
					ix += 1;
					Some(v)
				} else if ix < ix_lim {
					ix += 1;
					Some(self.data[ix - 1])
				} else {
					None
				}
			} else {
				let (s1, s2) = nibble_ops::SPLIT_SHIFTS;
				// unaligned
				if nib_res > 0 {
					let v = self.data[ix] >> s1;
					let v = nibble_ops::pad_right(v);
					nib_res = 0;
					Some(v)
				} else if ix < ix_lim {
					ix += 1;
					let b1 = self.data[ix - 1] << s2;
					let b2 = self.data[ix] >> s1;
					Some(b1 | b2)
				} else {
					None
				}
			}
		})
	}

	/// Return left portion of `NibbleSlice`, if the slice
	/// originates from a full key it will be the `Prefix of
	/// the node`.
	pub fn left(&'a self) -> Prefix {
		let split = self.offset / nibble_ops::NIBBLE_PER_BYTE;
		let ix = (self.offset % nibble_ops::NIBBLE_PER_BYTE) as u8;
		if ix == 0 {
			(&self.data[..split], None)
		} else {
			(&self.data[..split], Some(nibble_ops::pad_left(self.data[split])))
		}
	}

	/// Owned version of a `Prefix` from a `left` method call.
	pub fn left_owned(&'a self) -> (BackingByteVec, Option<u8>) {
		let (a, b) = self.left();
		(a.into(), b)
	}
}

impl<'a> Into<NodeKey> for NibbleSlice<'a> {
	fn into(self) -> NodeKey {
		(self.offset, self.data.into())
	}
}

impl<'a> PartialEq for NibbleSlice<'a> {
	fn eq(&self, them: &Self) -> bool {
		self.len() == them.len() && self.starts_with(them)
	}
}

impl<'a> Eq for NibbleSlice<'a> { }

impl<'a> PartialOrd for NibbleSlice<'a> {
	fn partial_cmp(&self, them: &Self) -> Option<Ordering> {
		Some(self.cmp(them))
	}
}

impl<'a> Ord for NibbleSlice<'a> {
	fn cmp(&self, them: &Self) -> Ordering {
		let s = min(self.len(), them.len());
		let mut i = 0usize;
		while i < s {
			match self.at(i).partial_cmp(&them.at(i)).unwrap() {
				Ordering::Less => return Ordering::Less,
				Ordering::Greater => return Ordering::Greater,
				_ => i += 1,
			}
		}
		self.len().cmp(&them.len())
	}
}

#[cfg(feature = "std")]
impl<'a> fmt::Debug for NibbleSlice<'a> {
	fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
		for i in 0..self.len() {
			match i {
				0 => write!(f, "{:01x}", self.at(i))?,
				_ => write!(f, "'{:01x}", self.at(i))?,
			}
		}
		Ok(())
	}
}

#[cfg(test)]
mod tests {
	use crate::nibble::{NibbleSlice, BackingByteVec};
	static D: &'static [u8;3] = &[0x01u8, 0x23, 0x45];

	#[test]
	fn basics() {
		let n = NibbleSlice::new(D);
		assert_eq!(n.len(), 6);
		assert!(!n.is_empty());

		let n = NibbleSlice::new_offset(D, 6);
		assert!(n.is_empty());

		let n = NibbleSlice::new_offset(D, 3);
		assert_eq!(n.len(), 3);
		for i in 0..3 {
			assert_eq!(n.at(i), i as u8 + 3);
		}
	}

	#[test]
	fn iterator() {
		let n = NibbleSlice::new(D);
		let mut nibbles: Vec<u8> = vec![];
		nibbles.extend(n.iter());
		assert_eq!(nibbles, (0u8..6).collect::<Vec<_>>())
	}

	#[test]
	fn mid() {
		let n = NibbleSlice::new(D);
		let m = n.mid(2);
		for i in 0..4 {
			assert_eq!(m.at(i), i as u8 + 2);
		}
		let m = n.mid(3);
		for i in 0..3 {
			assert_eq!(m.at(i), i as u8 + 3);
		}
	}

	#[test]
	fn encoded_pre() {
		let n = NibbleSlice::new(D);
		assert_eq!(n.to_stored(), (0, BackingByteVec::from_slice(&[0x01, 0x23, 0x45])));
		assert_eq!(n.mid(1).to_stored(), (1, BackingByteVec::from_slice(&[0x01, 0x23, 0x45])));
		assert_eq!(n.mid(2).to_stored(), (0, BackingByteVec::from_slice(&[0x23, 0x45])));
		assert_eq!(n.mid(3).to_stored(), (1, BackingByteVec::from_slice(&[0x23, 0x45])));
	}

	#[test]
	fn from_encoded_pre() {
		let n = NibbleSlice::new(D);
		let stored: BackingByteVec = [0x01, 0x23, 0x45][..].into();
		assert_eq!(n, NibbleSlice::from_stored(&(0, stored.clone())));
		assert_eq!(n.mid(1), NibbleSlice::from_stored(&(1, stored)));
	}

	#[test]
	fn range_iter() {
		let n = NibbleSlice::new(D);
		for i in [
			vec![],
			vec![0x00],
			vec![0x01],
			vec![0x00, 0x12],
			vec![0x01, 0x23],
			vec![0x00, 0x12, 0x34],
			vec![0x01, 0x23, 0x45],
		].iter().enumerate() {
			range_iter_test(n, i.0, None, &i.1[..]);
		}
		for i in [
			vec![],
			vec![0x01],
			vec![0x12],
			vec![0x01, 0x23],
			vec![0x12, 0x34],
			vec![0x01, 0x23, 0x45],
		].iter().enumerate() {
			range_iter_test(n, i.0, Some(1), &i.1[..]);
		}
		for i in [
			vec![],
			vec![0x02],
			vec![0x23],
			vec![0x02, 0x34],
			vec![0x23, 0x45],
		].iter().enumerate() {
			range_iter_test(n, i.0, Some(2), &i.1[..]);
		}
		for i in [
			vec![],
			vec![0x03],
			vec![0x34],
			vec![0x03, 0x45],
		].iter().enumerate() {
			range_iter_test(n, i.0, Some(3), &i.1[..]);
		}
	}

	fn range_iter_test(n: NibbleSlice, nb: usize, mid: Option<usize>, res: &[u8]) {
		let n = if let Some(i) = mid {
			n.mid(i)
		} else { n };
		assert_eq!(&n.right_range_iter(nb).collect::<Vec<_>>()[..], res);
	}

	#[test]
	fn shared() {
		let n = NibbleSlice::new(D);

		let other = &[0x01u8, 0x23, 0x01, 0x23, 0x45, 0x67];
		let m = NibbleSlice::new(other);

		assert_eq!(n.common_prefix(&m), 4);
		assert_eq!(m.common_prefix(&n), 4);
		assert_eq!(n.mid(1).common_prefix(&m.mid(1)), 3);
		assert_eq!(n.mid(1).common_prefix(&m.mid(2)), 0);
		assert_eq!(n.common_prefix(&m.mid(4)), 6);
		assert!(!n.starts_with(&m.mid(4)));
		assert!(m.mid(4).starts_with(&n));
	}

	#[test]
	fn compare() {
		let other = &[0x01u8, 0x23, 0x01, 0x23, 0x45];
		let n = NibbleSlice::new(D);
		let m = NibbleSlice::new(other);

		assert!(n != m);
		assert!(n > m);
		assert!(m < n);

		assert!(n == m.mid(4));
		assert!(n >= m.mid(4));
		assert!(n <= m.mid(4));
	}
}