1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
// Copyright 2017, 2018 Parity Technologies
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Generates trie root.
//!
//! This module should be used to generate trie root hash.

#![cfg_attr(not(feature = "std"), no_std)]

#[cfg(not(feature = "std"))]
extern crate alloc;


#[cfg(feature = "std")]
mod rstd {
	pub use std::vec::Vec;
	pub use std::cmp;
	pub use std::collections::{BTreeMap, VecDeque};
}

#[cfg(not(feature = "std"))]
mod rstd {
	pub use core::cmp;
	pub use alloc::collections::{BTreeMap, VecDeque};
	pub use alloc::vec::Vec;
}

use self::rstd::*;

pub use hash_db::Hasher;

/// Byte-stream oriented trait for constructing closed-form tries.
pub trait TrieStream {
	/// Construct a new `TrieStream`
	fn new() -> Self;
	/// Append an Empty node
	fn append_empty_data(&mut self);
	/// Start a new Branch node, possibly with a value; takes a list indicating
	/// which slots in the Branch node has further child nodes.
	fn begin_branch(
		&mut self,
		maybe_key: Option<&[u8]>,
		maybe_value: Option<&[u8]>,
		has_children: impl Iterator<Item = bool>,
	);
	/// Append an empty child node. Optional.
	fn append_empty_child(&mut self) {}
	/// Wrap up a Branch node portion of a `TrieStream` and append the value
	/// stored on the Branch (if any).
	fn end_branch(&mut self, _value: Option<&[u8]>) {}
	/// Append a Leaf node
	fn append_leaf(&mut self, key: &[u8], value: &[u8]);
	/// Append an Extension node
	fn append_extension(&mut self, key: &[u8]);
	/// Append a Branch of Extension substream
	fn append_substream<H: Hasher>(&mut self, other: Self);
	/// Return the finished `TrieStream` as a vector of bytes.
	fn out(self) -> Vec<u8>;
}

fn shared_prefix_length<T: Eq>(first: &[T], second: &[T]) -> usize {
	first.iter()
		.zip(second.iter())
		.position(|(f, s)| f != s)
		.unwrap_or_else(|| cmp::min(first.len(), second.len()))
}

/// Generates a trie root hash for a vector of key-value tuples
///
/// ```rust
/// use hex_literal::hex;
/// use trie_root::trie_root;
/// use reference_trie::ReferenceTrieStream;
/// use keccak_hasher::KeccakHasher;
///
/// let v = vec![
/// 	("doe", "reindeer"),
/// 	("dog", "puppy"),
/// 	("dogglesworth", "cat"),
/// ];
///
/// let root = hex!["0807d5393ae7f349481063ebb5dbaf6bda58db282a385ca97f37dccba717cb79"];
/// assert_eq!(trie_root::<KeccakHasher, ReferenceTrieStream, _, _, _>(v), root);
/// ```
pub fn trie_root<H, S, I, A, B>(input: I) -> H::Out where
	I: IntoIterator<Item = (A, B)>,
	A: AsRef<[u8]> + Ord,
	B: AsRef<[u8]>,
	H: Hasher,
	S: TrieStream,
{
	trie_root_inner::<H, S, I, A, B>(input, false)
}

fn trie_root_inner<H, S, I, A, B>(input: I, no_extension: bool) -> H::Out where
	I: IntoIterator<Item = (A, B)>,
	A: AsRef<[u8]> + Ord,
	B: AsRef<[u8]>,
	H: Hasher,
	S: TrieStream,
{
	// first put elements into btree to sort them and to remove duplicates
	let input = input
		.into_iter()
		.collect::<BTreeMap<_, _>>();

	// convert to nibbles
	let mut nibbles = Vec::with_capacity(input.keys().map(|k| k.as_ref().len()).sum::<usize>() * 2);
	let mut lens = Vec::with_capacity(input.len() + 1);
	lens.push(0);
	for k in input.keys() {
		for &b in k.as_ref() {
			nibbles.push(b >> 4);
			nibbles.push(b & 0x0F);
		}
		lens.push(nibbles.len());
	}

	// then move them to a vector
	let input = input.into_iter().zip(lens.windows(2))
		.map(|((_, v), w)| (&nibbles[w[0]..w[1]], v))
		.collect::<Vec<_>>();

	let mut stream = S::new();
	build_trie::<H, S, _, _>(&input, 0, &mut stream, no_extension);
	H::hash(&stream.out())
}

/// Variant of `trie_root` for patricia trie without extension node.
/// See [`trie_root`].
pub fn trie_root_no_extension<H, S, I, A, B>(input: I) -> H::Out where
	I: IntoIterator<Item = (A, B)>,
	A: AsRef<[u8]> + Ord,
	B: AsRef<[u8]>,
	H: Hasher,
	S: TrieStream,
{
	trie_root_inner::<H, S, I, A, B>(input, true)
}

//#[cfg(test)]	// consider feature="std"
/// Method similar to `trie_root` but returning the root encoded
/// node instead of its hash.
/// Mainly use for testing or debugging.
pub fn unhashed_trie<H, S, I, A, B>(input: I) -> Vec<u8> where
	I: IntoIterator<Item = (A, B)>,
	A: AsRef<[u8]> + Ord,
	B: AsRef<[u8]>,
	H: Hasher,
	S: TrieStream,
{
	unhashed_trie_inner::<H, S, I, A, B>(input, false)
}

fn unhashed_trie_inner<H, S, I, A, B>(input: I, no_extension: bool) -> Vec<u8> where
	I: IntoIterator<Item = (A, B)>,
	A: AsRef<[u8]> + Ord,
	B: AsRef<[u8]>,
	H: Hasher,
	S: TrieStream,
{
	// first put elements into btree to sort them and to remove duplicates
	let input = input
		.into_iter()
		.collect::<BTreeMap<_, _>>();

	let mut nibbles = Vec::with_capacity(input.keys().map(|k| k.as_ref().len()).sum::<usize>() * 2);
	let mut lens = Vec::with_capacity(input.len() + 1);
	lens.push(0);
	for k in input.keys() {
		for &b in k.as_ref() {
			nibbles.push(b >> 4);
			nibbles.push(b & 0x0F);
		}
		lens.push(nibbles.len());
	}

	// then move them to a vector
	let input = input.into_iter().zip(lens.windows(2))
		.map(|((_, v), w)| (&nibbles[w[0]..w[1]], v))
		.collect::<Vec<_>>();

	let mut stream = S::new();
	build_trie::<H, S, _, _>(&input, 0, &mut stream, no_extension);
	stream.out()
}

/// Variant of `unhashed_trie` for patricia trie without extension node.
/// See [`unhashed_trie`].
pub fn unhashed_trie_no_extension<H, S, I, A, B>(input: I) -> Vec<u8> where
	I: IntoIterator<Item = (A, B)>,
	A: AsRef<[u8]> + Ord,
	B: AsRef<[u8]>,
	H: Hasher,
	S: TrieStream,
{
	unhashed_trie_inner::<H, S, I, A, B>(input, true)
}

/// Generates a key-hashed (secure) trie root hash for a vector of key-value tuples.
///
/// ```rust
/// use hex_literal::hex;
/// use trie_root::sec_trie_root;
/// use keccak_hasher::KeccakHasher;
/// use reference_trie::ReferenceTrieStream;
///
/// let v = vec![
/// 	("doe", "reindeer"),
/// 	("dog", "puppy"),
/// 	("dogglesworth", "cat"),
/// ];
///
/// let root = hex!["d6e02b2bd48aa04fd2ad87cfac1144a29ca7f7dc60f4526c7b7040763abe3d43"];
/// assert_eq!(sec_trie_root::<KeccakHasher, ReferenceTrieStream, _, _, _>(v), root);
/// ```
pub fn sec_trie_root<H, S, I, A, B>(input: I) -> H::Out where
	I: IntoIterator<Item = (A, B)>,
	A: AsRef<[u8]>,
	B: AsRef<[u8]>,
	H: Hasher,
	H::Out: Ord,
	S: TrieStream,
{
	trie_root::<H, S, _, _, _>(input.into_iter().map(|(k, v)| (H::hash(k.as_ref()), v)))
}

/// Takes a slice of key/value tuples where the key is a slice of nibbles
/// and encodes it into the provided `Stream`.
fn build_trie<H, S, A, B>(input: &[(A, B)], cursor: usize, stream: &mut S, no_extension: bool) where
	A: AsRef<[u8]>,
	B: AsRef<[u8]>,
	H: Hasher,
	S: TrieStream,
{
	match input.len() {
		// No input, just append empty data.
		0 => stream.append_empty_data(),
		// Leaf node; append the remainder of the key and the value. Done.
		1 => stream.append_leaf(&input[0].0.as_ref()[cursor..], &input[0].1.as_ref() ),
		// We have multiple items in the input. Figure out if we should add an
		// extension node or a branch node.
		_ => {
			let (key, value) = (&input[0].0.as_ref(), input[0].1.as_ref());
			// Count the number of nibbles in the other elements that are
			// shared with the first key.
			// e.g. input = [ [1'7'3'10'12'13], [1'7'3'], [1'7'7'8'9'] ] => [1'7'] is common => 2
			let shared_nibble_count = input.iter().skip(1).fold(key.len(), |acc, &(ref k, _)| {
				cmp::min( shared_prefix_length(key, k.as_ref()), acc )
			});
			// Add an extension node if the number of shared nibbles is greater
			// than what we saw on the last call (`cursor`): append the new part
			// of the path then recursively append the remainder of all items
			// who had this partial key.
			let (cursor, o_branch_slice) = if no_extension {
				if shared_nibble_count > cursor {
					(shared_nibble_count, Some(&key[cursor..shared_nibble_count]))
				} else {
					(cursor, Some(&key[0..0]))
				}
			} else if shared_nibble_count > cursor {
				stream.append_extension(&key[cursor..shared_nibble_count]);
				build_trie_trampoline::<H, _, _, _>(
					input,
					shared_nibble_count,
					stream,
					no_extension,
				);
				return;
			} else { (cursor, None) };

			// We'll be adding a branch node because the path is as long as it gets.
			// First we need to figure out what entries this branch node will have...

			// We have a a value for exactly this key. Branch node will have a value
			// attached to it.
			let value = if cursor == key.len() { Some(value) } else { None };

			// We need to know how many key nibbles each of the children account for.
			let mut shared_nibble_counts = [0usize; 16];
			{
				// If the Branch node has a value then the first of the input keys
				// is exactly the key for that value and we don't care about it
				// when finding shared nibbles for our child nodes. (We know it's
				// the first of the input keys, because the input is sorted)
				let mut begin = match value { None => 0, _ => 1 };
				for i in 0..16 {
					shared_nibble_counts[i] = input[begin..].iter()
						.take_while(|(k, _)| k.as_ref()[cursor] == i as u8)
						.count();
					begin += shared_nibble_counts[i];
				}
			}

			// Put out the node header:
			stream.begin_branch(o_branch_slice, value, shared_nibble_counts.iter().map(|&n| n > 0));

			// Fill in each slot in the branch node. We don't need to bother with empty slots
			// since they were registered in the header.
			let mut begin = match value { None => 0, _ => 1 };
			for &count in &shared_nibble_counts {
				if count > 0 {
					build_trie_trampoline::<H, S, _, _>(
						&input[begin..(begin + count)],
						cursor + 1,
						stream,
						no_extension,
					);
					begin += count;
				} else {
					stream.append_empty_child();
				}
			}

			stream.end_branch(value);
		}
	}
}

fn build_trie_trampoline<H, S, A, B>(
	input: &[(A, B)],
	cursor: usize,
	stream: &mut S,
	no_extension: bool,
) where
	A: AsRef<[u8]>,
	B: AsRef<[u8]>,
	H: Hasher,
	S: TrieStream,
{
	let mut substream = S::new();
	build_trie::<H, _, _, _>(input, cursor, &mut substream, no_extension);
	stream.append_substream::<H>(substream);
}