Struct bitvec::slice::BitSlice [−][src]
A compact slice of bits, whose order and storage types can be customized.
BitSlice is a specialized slice type, which can only ever be held by
reference or specialized owning pointers provided by this crate. The value
patterns of its handles are opaque binary structures, which cannot be
meaningfully inspected by user code.
BitSlice can only be dynamically allocated by this library. Creation of any
other BitSlice collections will result in severely incorrect behavior.
A BitSlice reference can be created through the bitvec! macro, from a
BitVec collection, or from most common Rust types (fundamentals, slices of
them, and small arrays) using the Bits and BitsMut traits.
BitSlices are a view into a block of memory at bit-level resolution. They are
represented by a crate-internal pointer structure that cannot be used with
other Rust code except through the provided conversion APIs.
use bitvec::prelude::*; let bv = bitvec![0, 1, 0, 1]; // slicing a bitvec let bslice: &BitSlice = &bv[..]; // coercing an array to a bitslice let bslice: &BitSlice<_, _> = [1u8, 254u8].bits::<Msb0>();
Bit slices are either mutable or shared. The shared slice type is
&BitSlice<O, T>, while the mutable slice type is &mut BitSlice<O, T>. For
example, you can mutate bits in the memory to which a mutable BitSlice points:
use bitvec::prelude::*; let mut base = [0u8, 0, 0, 0]; { let bs: &mut BitSlice<_, _> = base.bits_mut::<Msb0>(); bs.set(13, true); eprintln!("{:?}", bs.as_ref()); assert!(bs[13]); } assert_eq!(base[1], 4);
Type Parameters
O: An implementor of theBitOrdertrait. This type is used to convert semantic indices into concrete bit positions in elements, and store or retrieve bit values from the storage type.T: An implementor of theBitStoretrait:u8,u16,u32, oru64(64-bit systems only). This is the actual type in memory that the slice will use to store data.
Safety
The &BitSlice reference handle has the same size as standard Rust slice
handles, but it is extremely value-incompatible with them. Attempting to
treat &BitSlice<_, T> as &[T] in any manner except through the provided APIs
is catastrophically unsafe and unsound.
Implementations
impl<O, T> BitSlice<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
Reimplementation of the [T] inherent-method API.
pub fn len(&self) -> usize[src]
Returns the number of bits in the slice.
Original
Examples
let bits = 0u8.bits::<Local>(); assert_eq!(bits.len(), 8);
pub fn is_empty(&self) -> bool[src]
Returns true if the slice has a length of 0.
Original
Examples
let bits = 0u8.bits::<Local>(); assert!(!bits.is_empty()); assert!(BitSlice::<Local, usize>::empty().is_empty())
pub fn first(&self) -> Option<&bool>[src]
Returns the first bit of the slice, or None if it is empty.
Original
Examples
let bits = 1u8.bits::<Lsb0>(); assert_eq!(bits.first(), Some(&true)); assert!(BitSlice::<Local, usize>::empty().first().is_none());
pub fn first_mut(&mut self) -> Option<BitMut<'_, O, T>>[src]
Returns a mutable pointer to the first bit of the slice, or None if it
is empty.
Original
Examples
let mut data = 0u8; let bits = data.bits_mut::<Lsb0>(); if let Some(mut first) = bits.first_mut() { *first = true; } assert_eq!(data, 1u8);
pub fn split_first(&self) -> Option<(&bool, &Self)>[src]
Returns the first and all the rest of the bits of the slice, or None
if it is empty.
Examples
let bits = 1u8.bits::<Lsb0>(); if let Some((first, rest)) = bits.split_first() { assert_eq!(first, &true); assert_eq!(rest, &bits[1 ..]); }
pub fn split_first_mut(&mut self) -> Option<(BitMut<'_, O, T>, &mut Self)>[src]
Returns the first and all the rest of the bits of the slice, or None
if it is empty.
Examples
let mut data = 0u8; let bits = data.bits_mut::<Lsb0>(); if let Some((mut first, rest)) = bits.split_first_mut() { *first = true; *rest.at(0) = true; *rest.at(1) = true; } assert_eq!(data, 7);
pub fn split_last(&self) -> Option<(&bool, &Self)>[src]
Returns the last and all the rest of the bits of the slice, or None if
it is empty.
Examples
let bits = 1u8.bits::<Msb0>(); if let Some((last, rest)) = bits.split_last() { assert_eq!(last, &true); assert_eq!(rest, &bits[.. 7]); }
pub fn split_last_mut(&mut self) -> Option<(BitMut<'_, O, T>, &mut Self)>[src]
Returns the last and all the rest of the bits of the slice, or None if
it is empty.
Examples
let mut data = 0u8; let bits = data.bits_mut::<Msb0>(); if let Some((mut last, rest)) = bits.split_last_mut() { *last = true; *rest.at(0) = true; *rest.at(1) = true; } assert_eq!(data, 128 | 64 | 1);
pub fn last(&self) -> Option<&bool>[src]
Returns the last bit of the slice, or None if it is empty.
Examples
let bits = 1u8.bits::<Msb0>(); assert_eq!(Some(&true), bits.last()); assert!(BitSlice::<Local, usize>::empty().last().is_none());
pub fn last_mut(&mut self) -> Option<BitMut<'_, O, T>>[src]
Returns a mutable pointer to the last bit in the slice.
Examples
let mut data = 0u8; let bits = data.bits_mut::<Msb0>(); if let Some(mut last) = bits.last_mut() { *last = true; } assert!(bits[7]);
pub fn get<'a, I>(&'a self, index: I) -> Option<I::Immut> where
I: BitSliceIndex<'a, O, T>, [src]
I: BitSliceIndex<'a, O, T>,
Returns a reference to a bit or subslice depending on the type of
index.
- If given a position, returns a reference to the bit at that position
or
Noneif out of bounds. - If given a range, returns the subslice corresponding to that range, or
Noneif out of bounds.
Examples
let data = 1u8; let bits = data.bits::<Lsb0>(); assert_eq!(Some(&true), bits.get(0)); assert!(bits.get(8).is_none()); assert!(bits.get(1 ..).expect("in bounds").not_any()); assert!(bits.get(.. 12).is_none());
pub fn get_mut<'a, I>(&'a mut self, index: I) -> Option<I::Mut> where
I: BitSliceIndex<'a, O, T>, [src]
I: BitSliceIndex<'a, O, T>,
Returns a mutable reference to a bit or subslice depending on the type
of index (see get) or None if the index is out of bounds.
Examples
let mut data = 0u8; let bits = data.bits_mut::<Lsb0>(); if let Some(mut bit) = bits.get_mut(1) { *bit = true; } if let Some(bits) = bits.get_mut(5 .. 7) { bits.set_all(true); } assert_eq!(data, 64 | 32 | 2);
pub unsafe fn get_unchecked<'a, I>(&'a self, index: I) -> I::Immut where
I: BitSliceIndex<'a, O, T>, [src]
I: BitSliceIndex<'a, O, T>,
Returns a reference to a bit or subslice, without doing bounds checking.
This is generally not recommended; use with caution! For a safe
alternative, see get.
Safety
As this function does not perform boundary checking, the caller must
ensure that self is an index within the boundaries of slice before
calling in order to avoid boundary escapes and ensuing safety
violations.
Examples
let data = 4u8; let bits = data.bits::<Lsb0>(); unsafe { assert!(bits.get_unchecked(2)); assert!(!bits.get_unchecked(1)); }
pub unsafe fn get_unchecked_mut<'a, I>(&'a mut self, index: I) -> I::Mut where
I: BitSliceIndex<'a, O, T>, [src]
I: BitSliceIndex<'a, O, T>,
Returns a mutable reference to a bit or subslice, without doing bounds checking.
This is generally not recommended; use with caution! For a safe
alternative, see get_mut.
Safety
As this function does not perform boundary checking, the caller must
ensure that self is an index within the boundaries of slice before
calling in order to avoid boundary escapes and ensuing safety
violations.
Examples
let mut data = 0u8; let bits = data.bits_mut::<Msb0>(); unsafe { let mut bit = bits.get_unchecked_mut(0); *bit = true; drop(bit); // release the borrow immediately let bits = bits.get_unchecked_mut(6 ..); bits.set_all(true); } assert_eq!(data, 1 | 2 | 128);
pub fn as_ptr(&self) -> *const T[src]
Returns a raw pointer to the slice’s buffer.
The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.
The caller must also ensure that the memory the pointer
(non-transitively) points to is never written to (except inside an
UnsafeCell) using this pointer or any pointer derived from it. If you
need to mutate the contents of the buffer, use as_mut_ptr.
Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.
Notes
This pointer is always to the first T element in the backing storage,
even if that element is only partially used by the self slice.
Multiple separate BitSlice handles may produce the same pointer with
this method.
Examples
let data = [0u8; 2]; let bits = data.bits::<Msb0>(); let (head, rest) = bits.split_at(4); assert_eq!(head.as_ptr(), rest.as_ptr());
pub fn as_mut_ptr(&mut self) -> *mut T[src]
Returns an unsafe mutable pointer to the slice’s buffer.
The caller must ensure thath the slice outlives the pointer this function returns, or else it will end up pointing to garbage.
Modifying the container referenced by this slice may couse its buffer to be reallocated, which would also make any pointers to it invalid.
Notes
This pointer is always to the first T element in the backing storage,
even if that element is only partially used by the self slice.
Multiple separate BitSlice handles may produce the same pointer with
this method.
Examples
let mut data = [0u8; 2]; let bits = data.bits_mut::<Msb0>(); let (head, rest) = bits.split_at_mut(4); assert_eq!(head.as_mut_ptr(), rest.as_mut_ptr()); unsafe { *head.as_mut_ptr() = 2; } assert!(rest[2]);
pub fn swap(&mut self, a: usize, b: usize)[src]
Swaps two bits in the slice.
Arguments
a: The index of the first bitb: The index of the second bit
Panics
Panics if a or b are out of bounds.
Examples
let mut data = 2u8; let bits = data.bits_mut::<Lsb0>(); bits.swap(0, 1); assert_eq!(data, 1);
pub fn reverse(&mut self)[src]
Reverses the order of bits in the slice, in place.
Examples
use bitvec::prelude::*; let mut data = 0b1_1001100u8; let bits = data.bits_mut::<Msb0>(); bits[1 ..].reverse(); assert_eq!(data, 0b1_0011001);
pub fn iter(&self) -> Iter<'_, O, T>ⓘ[src]
Returns an iterator over the slice.
Examples
let data = 3u8; let bits = data.bits::<Lsb0>(); let mut iter = bits[.. 4].iter(); assert_eq!(iter.next(), Some(&true)); assert_eq!(iter.next(), Some(&true)); assert_eq!(iter.next(), Some(&false)); assert_eq!(iter.next(), Some(&false)); assert!(iter.next().is_none());
pub fn iter_mut(&mut self) -> IterMut<'_, O, T>ⓘ[src]
Returns an iterator that allows modifying each bit.
Examples
let mut data = 0u8; let bits = &mut data.bits_mut::<Lsb0>()[.. 2]; for mut bit in bits.iter_mut() { *bit = true; } assert_eq!(data, 3);
pub fn windows(&self, width: usize) -> Windows<'_, O, T>ⓘ[src]
Returns an iterator over all contiguous windows of width width.
The windows overlap. If the slice is shorter than width, the iterator
returns no values.
Panics
Panics if width is 0.
Examples
let data = 0b100_010_01u8; let bits = data.bits::<Msb0>(); let mut iter = bits[.. 5].windows(3); assert_eq!(iter.next().unwrap(), &bits[0 .. 3]); assert_eq!(iter.next().unwrap(), &bits[1 .. 4]); assert_eq!(iter.next().unwrap(), &bits[2 .. 5]); assert!(iter.next().is_none());
If the slice is shorter than width:
let data = 0u8; let bits = data.bits::<Local>(); let mut iter = bits[.. 3].windows(4); assert!(iter.next().is_none());
pub fn chunks(&self, chunk_size: usize) -> Chunks<'_, O, T>ⓘ[src]
Returns an iterator over chunk_size bits of the slice at a time,
starting at the beginning of the slice.
The chunks are slices and do not overlap. If chunk_size does not
divide the length of the slice, then the last chunk will not have length
chunk_size.
See chunks_exact for a variant of this iterator that returns chunks
of always exactly chunk_size elements, and rchunks for the same
iterator but starting at the end of the slice.
Panics
Panics if chunk_size is 0.
Examples
let data = 0b001_010_10u8; let bits = data.bits::<Msb0>(); let mut iter = bits.chunks(3); assert_eq!(iter.next().unwrap(), &bits[0 .. 3]); assert_eq!(iter.next().unwrap(), &bits[3 .. 6]); assert_eq!(iter.next().unwrap(), &bits[6 .. 8]); assert!(iter.next().is_none());
pub fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<'_, O, T>ⓘ[src]
Returns an iterator over chunk_size bits of the slice at a time,
starting at the beginning of the slice.
The chunks are mutable slices, and do not overlap. If chunk_size does
not divide the length of the slice, then the last chunk will not have
length chunk_size.
See chunks_exact_mut for a variant of this iterator that returns
chunks of always exactly chunk_size bits, and rchunks_mut for the
same iterator but starting at the end of the slice.
Panics
Panics if chunk_size is 0.
Examples
let mut data = 0u8; let bits = data.bits_mut::<Msb0>(); let mut count = 0; for chunk in bits.chunks_mut(3) { chunk.store(4u8 >> count); count += 1; } assert_eq!(count, 3); assert_eq!(data, 0b100_010_01);
pub fn chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, O, T>ⓘNotable traits for ChunksExact<'a, O, T>
impl<'a, O, T> Iterator for ChunksExact<'a, O, T> where
O: BitOrder,
T: 'a + BitStore, type Item = &'a BitSlice<O, T>;[src]
Notable traits for ChunksExact<'a, O, T>
impl<'a, O, T> Iterator for ChunksExact<'a, O, T> where
O: BitOrder,
T: 'a + BitStore, type Item = &'a BitSlice<O, T>;Returns an iterator over chunk_size elements of the slice at a time,
starting at the beginning of the slice.
The chunks are slices and do not overlap. If chunk_size does not
divide the length of the slice, then the last up to chunk_size - 1
elements will be omitted and can be retrieved from the remainder
function of the iterator.
Due to each chunk having exactly chunk_size elements, the compiler can
often optimize the resulting code better than in the case of chunks.
See chunks for a variant of this iterator that also returns the
remainder as a smaller chunk, and rchunks_exact for the same
iterator but starting at the end of the slice.
Panics
Panics if chunk_size is 0.
Examples
let data = 0b100_010_01u8; let bits = data.bits::<Msb0>(); let mut iter = bits.chunks_exact(3); assert_eq!(iter.next().unwrap(), &bits[0 .. 3]); assert_eq!(iter.next().unwrap(), &bits[3 .. 6]); assert!(iter.next().is_none()); assert_eq!(iter.remainder(), &bits[6 .. 8]);
pub fn chunks_exact_mut(
&mut self,
chunk_size: usize
) -> ChunksExactMut<'_, O, T>ⓘNotable traits for ChunksExactMut<'a, O, T>
impl<'a, O, T> Iterator for ChunksExactMut<'a, O, T> where
O: BitOrder,
T: 'a + BitStore, type Item = &'a mut BitSlice<O, T>;[src]
&mut self,
chunk_size: usize
) -> ChunksExactMut<'_, O, T>ⓘ
Notable traits for ChunksExactMut<'a, O, T>
impl<'a, O, T> Iterator for ChunksExactMut<'a, O, T> where
O: BitOrder,
T: 'a + BitStore, type Item = &'a mut BitSlice<O, T>;Returns an iterator over chunk_size elements of the slice at a time,
starting at the beginning of the slice.
The chunks are mutable slices, and do not overlap. If chunk_size does
not divide the length of the slice, then the last up to chunk_size - 1
elements will be omitted and can be retrieved from the into_remainder
function of the iterator.
Due to each chunk having exactly chunk_size elements, the compiler can
often optimize the resulting code better than in the case of
chunks_mut.
See chunks_mut for a variant of this iterator that also returns the
remainder as a smaller chunk, and rchunks_exact_mut for the same
iterator but starting at the end of the slice of the slice.
Panics
Panics if chunk_size is 0.
Examples
let mut data = 0u8; let bits = data.bits_mut::<Msb0>(); let mut count = 0u8; let mut iter = bits.chunks_exact_mut(3); for chunk in &mut iter { chunk.store(4u8 >> count); count += 1; } iter.into_remainder().store(1u8); assert_eq!(count, 2); assert_eq!(data, 0b100_010_01);
pub fn rchunks(&self, chunk_size: usize) -> RChunks<'_, O, T>ⓘ[src]
Returns an iterator over chunk_size bits of the slice at a time,
starting at the end of the slice.
The chunks are slices and do not overlap. If chunk_size does not
divide the length of the slice, then the last chunk will not have length
of the slice, then the last chunk will not have length chunk_size.
See rchunks_exact for a variant of this iterator that returns chunks
of always exactly chunk_size bits, and chunks for the same
iterator but starting at the beginning of the slice.
Panics
Panics if chunk_size is 0.
Examples
let data = 0b01_010_100u8; let bits = data.bits::<Msb0>(); let mut iter = bits.rchunks(3); assert_eq!(iter.next().unwrap(), &bits[5 .. 8]); assert_eq!(iter.next().unwrap(), &bits[2 .. 5]); assert_eq!(iter.next().unwrap(), &bits[0 .. 2]); assert!(iter.next().is_none());
pub fn rchunks_mut(&mut self, chunk_size: usize) -> RChunksMut<'_, O, T>ⓘNotable traits for RChunksMut<'a, O, T>
impl<'a, O, T> Iterator for RChunksMut<'a, O, T> where
O: BitOrder,
T: 'a + BitStore, type Item = &'a mut BitSlice<O, T>;[src]
Notable traits for RChunksMut<'a, O, T>
impl<'a, O, T> Iterator for RChunksMut<'a, O, T> where
O: BitOrder,
T: 'a + BitStore, type Item = &'a mut BitSlice<O, T>;Returns an iterator over chunk_size bits of the slice at a time,
starting at the end of the slice.
The chunks are mutable slices and do not overlap. If chunk_size does
not divide the length of the slice, then the last chunk will not have
length of the slice, then the last chunk will not have length
chunk_size.
See rchunks_exact_mut for a variant of this iterator that returns
chunks of always exactly chunk_size bits, and chunks_mut for the
same iterator but starting at the beginning of the slice.
Panics
Panics if chunk_size is 0.
Examples
let mut data = 0u8; let bits = data.bits_mut::<Lsb0>(); let mut count = 0; for chunk in bits.rchunks_mut(3) { chunk.store(4u8 >> count); count += 1; } assert_eq!(count, 3); assert_eq!(data, 0b100_010_01);
pub fn rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, O, T>ⓘNotable traits for RChunksExact<'a, O, T>
impl<'a, O, T> Iterator for RChunksExact<'a, O, T> where
O: BitOrder,
T: 'a + BitStore, type Item = &'a BitSlice<O, T>;[src]
Notable traits for RChunksExact<'a, O, T>
impl<'a, O, T> Iterator for RChunksExact<'a, O, T> where
O: BitOrder,
T: 'a + BitStore, type Item = &'a BitSlice<O, T>;Returns an iterator over chunk_size bits of the slice at a time,
starting at the end of the slice.
The chunks are slices and do not overlap. If chunk_size does not
divide the length of the slice, then the last up to chunk_size - 1
bits will be omitted and can be retrieved from the remainder function
of the iterator.
Due to each chunk having exactly chunk_size bits, the compiler can
often optimize the resulting code better than in the case of chunks.
See rchunks for a variant of this iterator that also returns the
remainder as a smaller chunk, and chunks_exact for the same iterator
but starting at the beginning of the slice.
Panics
Panics if chunk_size is 0.
Examples
let data = 0b100_010_01u8; let bits = data.bits::<Lsb0>(); let mut iter = bits.rchunks_exact(3); assert_eq!(iter.next().unwrap(), &bits[5 .. 8]); assert_eq!(iter.next().unwrap(), &bits[2 .. 5]); assert!(iter.next().is_none()); assert_eq!(iter.remainder(), &bits[0 ..2]);
pub fn rchunks_exact_mut(
&mut self,
chunk_size: usize
) -> RChunksExactMut<'_, O, T>ⓘNotable traits for RChunksExactMut<'a, O, T>
impl<'a, O, T> Iterator for RChunksExactMut<'a, O, T> where
O: BitOrder,
T: 'a + BitStore, type Item = &'a mut BitSlice<O, T>;[src]
&mut self,
chunk_size: usize
) -> RChunksExactMut<'_, O, T>ⓘ
Notable traits for RChunksExactMut<'a, O, T>
impl<'a, O, T> Iterator for RChunksExactMut<'a, O, T> where
O: BitOrder,
T: 'a + BitStore, type Item = &'a mut BitSlice<O, T>;Returns an iterator over chunk_size bits of the slice at a time,
starting at the end of the slice.
The chunks are mutable slices, and do not overlap. If chunk_size does
not divide the length of the slice, then the last up to chunk_size - 1
bits will be omitted and can be retrieved from the into_remainder
function of the iterator.
Due to each chunk having exactly chunk_size bits, the compiler can
often optimize the resulting code better than in the case of
chunks_mut.
See rchunks_mut for a variant of this iterator that also returns the
remainder as a smaller chunk, and chunks_exact_mut for the same
iterator but starting at the beginning of the slice.
Panics
Panics if chunk_size is 0.
Examples
let mut data = 0u8; let bits = data.bits_mut::<Lsb0>(); let mut count = 0; let mut iter = bits.rchunks_exact_mut(3); for chunk in &mut iter { chunk.store(4u8 >> count); count += 1; } iter.into_remainder().store(1u8); assert_eq!(data, 0b100_010_01); assert_eq!(count, 2);
pub fn split_at(&self, mid: usize) -> (&Self, &Self)[src]
Divides one slice into two at an index.
The first will contain all indices from [0, mid) (excluding the index
mid itself) and the second will contain all indices from [mid, len)
(excluding the index len itself).
Panics
Panics if mid > len.
Examples
let data = 0x0Fu8; let bits = data.bits::<Msb0>(); { let (left, right) = bits.split_at(0); assert!(left.is_empty()); assert_eq!(right, bits); } { let (left, right) = bits.split_at(4); assert!(left.not_any()); assert!(right.all()); } { let (left, right) = bits.split_at(8); assert_eq!(left, bits); assert!(right.is_empty()); }
pub fn split_at_mut(&mut self, mid: usize) -> (&mut Self, &mut Self)[src]
Divides one mutable slice into two at an index.
The first will contain all indices from [0, mid) (excluding the index
mid itself) and the second will contain all indices from [mid, len)
(excluding the index len itself).
Panics
Panics if mid > len.
Examples
let mut data = 0x0Fu8; let bits = data.bits_mut::<Msb0>(); let (left, right) = bits.split_at_mut(4); assert!(left.not_any()); assert!(right.all()); *left.at(1) = true; *right.at(2) = false; assert_eq!(data, 0b0100_1101);
pub fn split<F>(&self, func: F) -> Split<'_, O, T, F>ⓘ where
F: FnMut(usize, &bool) -> bool, [src]
F: FnMut(usize, &bool) -> bool,
Returns an iterator over subslices separated by indexed bits that
satisfy the predicate function. The matched position is not contained
in the subslices.
API Differences
The slice::split method takes a predicate function with signature
(&T) -> bool, whereas this method’s predicate function has signature
(usize, &T) -> bool. This difference is in place because BitSlice by
definition has only one bit of information per slice item, and including
the index allows the callback function to make more informed choices.
Examples
let data = 0b01_001_000u8; let bits = data.bits::<Msb0>(); let mut iter = bits.split(|pos, bit| *bit); assert_eq!(iter.next().unwrap(), &bits[0 .. 1]); assert_eq!(iter.next().unwrap(), &bits[2 .. 4]); assert_eq!(iter.next().unwrap(), &bits[5 .. 8]); assert!(iter.next().is_none());
If the first position is matched, an empty slice will be the first item returned by the iterator. Similarly, if the last position in the slice is matched, an empty slice will be the last item returned by the iterator:
let data = 1u8; let bits = data.bits::<Msb0>(); let mut iter = bits.split(|pos, bit| *bit); assert_eq!(iter.next().unwrap(), &bits[0 .. 7]); assert_eq!(iter.next().unwrap(), BitSlice::<Local, usize>::empty()); assert!(iter.next().is_none());
If two matched positions are directly adjacent, an empty slice will be present between them.
let data = 0b001_100_00u8; let bits = data.bits::<Msb0>(); let mut iter = bits.split(|pos, bit| *bit); assert_eq!(iter.next().unwrap(), &bits[0 .. 2]); assert_eq!(iter.next().unwrap(), BitSlice::<Local, usize>::empty()); assert_eq!(iter.next().unwrap(), &bits[4 .. 8]); assert!(iter.next().is_none());
pub fn split_mut<F>(&mut self, func: F) -> SplitMut<'_, O, T, F>ⓘ where
F: FnMut(usize, &bool) -> bool, [src]
F: FnMut(usize, &bool) -> bool,
Returns an iterator over mutable subslices separated by indexed bits
that satisfy the predicate function. The matched position is not
contained in the subslices.
API Differences
The slice::split_mut method takes a predicate function with
signature (&T) -> bool, whereas this method’s predicate function has
signature (usize, &T) -> bool. This difference is in place because
BitSlice by definition has only one bit of information per slice item,
and including the index allows the callback function to make more
informed choices.
Examples
let mut data = 0b001_000_10u8; let bits = data.bits_mut::<Msb0>(); for group in bits.split_mut(|pos, bit| *bit) { *group.at(0) = true; } assert_eq!(data, 0b101_1001_1u8);
pub fn rsplit<F>(&self, func: F) -> RSplit<'_, O, T, F>ⓘ where
F: FnMut(usize, &bool) -> bool, [src]
F: FnMut(usize, &bool) -> bool,
Returns an iterator over subslices separated by indexed bits that
satisfy a predicate function, starting at the end of the slice and
working backwards. The matched position is not contained in the
subslices.
API Differences
The slice::rsplit method takes a predicate function with
signature (&T) -> bool, whereas this method’s predicate function has
signature (usize, &T) -> bool. This difference is in place because
BitSlice by definition has only one bit of information per slice item,
and including the index allows the callback function to make more
informed choices.
Examples
let data = 0b0001_0000u8; let bits = data.bits::<Msb0>(); let mut iter = bits.rsplit(|pos, bit| *bit); assert_eq!(iter.next().unwrap(), &bits[4 .. 8]); assert_eq!(iter.next().unwrap(), &bits[0 .. 3]); assert!(iter.next().is_none());
As with split(), if the first or last position is matched, an empty
slice will be the first (or last) item returned by the iterator.
let data = 0b1001_0001u8; let bits = data.bits::<Msb0>(); let mut iter = bits.rsplit(|pos, bit| *bit); assert!(iter.next().unwrap().is_empty()); assert_eq!(iter.next().unwrap(), &bits[4 .. 7]); assert_eq!(iter.next().unwrap(), &bits[1 .. 3]); assert!(iter.next().unwrap().is_empty()); assert!(iter.next().is_none());
pub fn rsplit_mut<F>(&mut self, func: F) -> RSplitMut<'_, O, T, F>ⓘ where
F: FnMut(usize, &bool) -> bool, [src]
F: FnMut(usize, &bool) -> bool,
Returns an iterator over mutable subslices separated by indexed bits
that satisfy a predicate function, starting at the end of the slice
and working backwards. The matched position is not contained in the
subslices.
API Differences
The slice::rsplit_mut method takes a predicate function with
signature (&T) -> bool, whereas this method’s predicate function has
signature (usize, &T) -> bool. This difference is in place because
BitSlice by definition has only one bit of information per slice item,
and including the index allows the callback function to make more
informed choices.
Examples
let mut data = 0u8; let bits = data.bits_mut::<Msb0>(); let mut count = 0u8; for group in bits.rsplit_mut(|pos, bit| pos % 3 == 2) { count += 1; group.store(count); } assert_eq!(data, 0b11_0_10_0_01);
pub fn splitn<F>(&self, n: usize, func: F) -> SplitN<'_, O, T, F>ⓘ where
F: FnMut(usize, &bool) -> bool, [src]
F: FnMut(usize, &bool) -> bool,
Returns an iterator over subslices separated by indexed bits that
satisfy the predicate function, limited to returning at most n
items. The matched position is not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
API Differences
The slice::splitn method takes a predicate function with
signature (&T) -> bool, whereas this method’s predicate function has
signature (usize, &T) -> bool. This difference is in place because
BitSlice by definition has only one bit of information per slice item,
and including the index allows the callback function to make more
informed choices.
Examples
Print the slice split once by indices divisible by 3:
let data = 0xA5u8; let bits = data.bits::<Msb0>(); for group in bits.splitn(2, |pos, bit| pos % 3 == 2) { println!("{}", group); } // [10] // [00101]
pub fn splitn_mut<F>(&mut self, n: usize, func: F) -> SplitNMut<'_, O, T, F>ⓘ where
F: FnMut(usize, &bool) -> bool, [src]
F: FnMut(usize, &bool) -> bool,
Returns an iterator over mutable subslices separated by indexed bits
that satisfy the predicate function, limited to returning at most n
items. The matched position is not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
API Differences
The slice::splitn_mut method takes a predicate function with
signature (&T) -> bool, whereas this method’s predicate function has
signature (usize, &T) -> bool. This difference is in place because
BitSlice by definition has only one bit of information per slice item,
and including the index allows the callback function to make more
informed choices.
Examples
let mut data = 0u8; let bits = data.bits_mut::<Msb0>(); let mut counter = 0u8; for group in bits.splitn_mut(2, |pos, bit| pos % 4 == 3) { counter += 1; group.store(counter); } assert_eq!(data, 0b001_0_0010);
pub fn rsplitn<F>(&self, n: usize, func: F) -> RSplitN<'_, O, T, F>ⓘ where
F: FnMut(usize, &bool) -> bool, [src]
F: FnMut(usize, &bool) -> bool,
Returns an iterator over subslices separated by indexed bits that
satisfy a predicate function, limited to returning at most n items.
This starts at the end of the slice and works backwards. The matched
position is not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
API Differences
The slice::rsplitn method takes a predicate function with
signature (&T) -> bool, whereas this method’s predicate function has
signature (usize, &T) -> bool. This difference is in place because
BitSlice by definition has only one bit of information per slice item,
and including the index allows the callback function to make more
informed choices.
Examples
Print the slice split once, starting from the end, by indices divisible by 3:
let data = 0xA5u8; let bits = data.bits::<Msb0>(); for group in bits.rsplitn(2, |pos, bit| pos % 3 == 2) { println!("{}", group); } // [01] // [10100]
pub fn rsplitn_mut<F>(&mut self, n: usize, func: F) -> RSplitNMut<'_, O, T, F>ⓘ where
F: FnMut(usize, &bool) -> bool, [src]
F: FnMut(usize, &bool) -> bool,
Returns an iterator over mutable subslices separated by indexed bits
that satisfy a predicate function, limited to returning at most n
items. This starts at the end of the slice and works backwards. The
matched position is not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
API Differences
The slice::rsplitn_mut method takes a predicate function with
signature (&T) -> bool, whereas this method’s predicate function has
signature (usize, &T) -> bool. This difference is in place because
BitSlice by definition has only one bit of information per slice item,
and including the index allows the callback function to make more
informed choices.
Examples
let mut data = 0u8; let bits = data.bits_mut::<Msb0>(); let mut counter = 0u8; for group in bits.rsplitn_mut(2, |pos, bit| pos % 3 == 2) { counter += 1; group.store(counter); } assert_eq!(data, 0b00010_0_01);
pub fn contains<P, U>(&self, query: &BitSlice<P, U>) -> bool where
P: BitOrder,
U: BitStore, [src]
P: BitOrder,
U: BitStore,
Returns true if the slice contains a region that matches the given
span.
API Differences
The slice::contains method tests for a single slice element.
Because this is a slice of single bits, testing for the presence of one
bool value is not very informative. This instead searches for a
subslice, which may be one or more bits.
Examples
let data = 0b0101_1010u8; let bits_be = data.bits::<Msb0>(); let bits_le = data.bits::<Lsb0>(); assert!(bits_be.contains(&bits_le[1 .. 5]));
This example uses a palindrome pattern to demonstrate that the query does not need to have the same type parameters as the searched slice.
pub fn starts_with<P, U>(&self, prefix: &BitSlice<P, U>) -> bool where
P: BitOrder,
U: BitStore, [src]
P: BitOrder,
U: BitStore,
Returns true if prefix is a prefix of the slice.
Examples
let data = 0b0110_1110u8; let bits = data.bits::<Msb0>(); assert!(bits.starts_with(&data.bits::<Lsb0>()[.. 2]));
pub fn ends_with<P, U>(&self, suffix: &BitSlice<P, U>) -> bool where
P: BitOrder,
U: BitStore, [src]
P: BitOrder,
U: BitStore,
Returns true if suffix is a suffix of the slice.
Examples
let data = 0b0111_1010u8; let bits = data.bits::<Msb0>(); assert!(bits.ends_with(&data.bits::<Lsb0>()[6 ..]));
pub fn rotate_left(&mut self, by: usize)[src]
Rotates the slice in-place such that the first by bits of the slice
move to the end while the last self.len() - by bits move to the
front. After calling rotate_left, the bit previously at index by
will become the first bit in the slice.
Panics
This function will panic if by is greater than the length of the
slice. Note that by == self.len() does not panic and is a noöp
rotation.
Complexity
Takes linear (in self.len()) time.
Examples
let mut data = 0xF0u8; let bits = data.bits_mut::<Msb0>(); bits.rotate_left(2); assert_eq!(data, 0xC3);
Rotating a subslice:
let mut data = 0xF0u8; let bits = data.bits_mut::<Msb0>(); bits[1 .. 5].rotate_left(1); assert_eq!(data, 0b1_1101_000);
pub fn rotate_right(&mut self, by: usize)[src]
Rotates the slice in-place such that the first self.len() - by bits of
the slice move to the end while the last by bits move to the front.
After calling rotate_right, the bit previously at index
self.len() - by will become the first bit in the slice.
Panics
This function will panic if by is greater than the length of the
slice. Note that by == self.len() does not panic and is a noöp
rotation.
Complexity
Takes linear (in self.len()) time.
Examples
let mut data = 0xF0u8; let bits = data.bits_mut::<Msb0>(); bits.rotate_right(2); assert_eq!(data, 0x3C);
Rotate a subslice:
let mut data = 0xF0u8; let bits = data.bits_mut::<Msb0>(); bits[1 .. 5].rotate_right(1); assert_eq!(data, 0b1_0111_000);
pub fn clone_from_slice<P, U>(&mut self, src: &BitSlice<P, U>) where
P: BitOrder,
U: BitStore, [src]
P: BitOrder,
U: BitStore,
Copies the elements from src into self.
The length of src must be the same as self.
This is equivalent to copy_from_slice; this function is only included
for API surface equivalence.
Panics
This function will panic if the two slices have different lengths.
Examples
let mut data = 0u8; let bits = data.bits_mut::<Msb0>(); let src = 0x0Fu16.bits::<Lsb0>(); bits.clone_from_slice(&src[.. 8]); assert_eq!(data, 0xF0);
Rust enforces that there can only be one mutable reference with no
immutable references to a particular piece of data in a particular
scope. Because of this, attempting to use clone_from_slice on a single
slice will result in a compile failure:
let mut data = 3u8; let bits = data.bits_mut::<Msb0>(); bits[.. 2].clone_from_slice(&bits[6 ..]);
To work around this, we can use [split_at_mut] to create two distinct
sub-slices from a slice:
let mut data = 3u8; let bits = data.bits_mut::<Msb0>(); let (head, tail) = bits.split_at_mut(4); head.clone_from_slice(tail); assert_eq!(data, 0x33);
pub fn copy_from_slice(&mut self, src: &Self)[src]
Copies the elements from src into self.
The length of src must be the same as self.
This is restricted to take exactly the same type of bit slice as the
source slice, so that the implementation has the chace to use faster
memcpy if possible.
Panics
This function will panic if the two slices have different lengths.
Examples
let mut data = 0u8; let bits = data.bits_mut::<Msb0>(); let src = 0x0Fu8.bits::<Msb0>(); bits.copy_from_slice(src); assert_eq!(data, 0x0F);
Rust enforces that there can only be one mutable reference with no
immutable references to a particular piece of data in a particular
scope. Because of this, attempting to use copy_from_slice on a single
slice will result in a compile failure:
let mut data = 3u8; let bits = data.bits_mut::<Msb0>(); bits[.. 2].copy_from_slice(&bits[6 ..]);
To work around this, we can use [split_at_mut] to create two distinct
sub-slices from a slice:
let mut data = 3u8; let bits = data.bits_mut::<Msb0>(); let (head, tail) = bits.split_at_mut(4); head.copy_from_slice(tail); assert_eq!(data, 0x33);
pub fn swap_with_slice<P, U>(&mut self, other: &mut BitSlice<P, U>) where
P: BitOrder,
U: BitStore, [src]
P: BitOrder,
U: BitStore,
Swaps all bits in self with those in other.
The length of other must be the same as self.
Panics
This function will panic if the two slices hav different lengths.
Example
Swapping two elements across slices:
let mut a = 0u8; let mut b = 0x96A5u16; let bits_a = a.bits_mut::<Lsb0>(); let bits_b = b.bits_mut::<Msb0>(); bits_a.swap_with_slice(&mut bits_b[4 .. 12]); assert_eq!(a, 0x56); assert_eq!(b, 0x9005);
Rust enforces that there can only be one mutable reference to a
particular piece of data in a particular scope. Because of this,
attempting to use swap_with_slice on a single slice will result in a
compile failure:
let mut data = 15u8; let bits = data.bits_mut::<Msb0>(); bits[.. 3].swap_with_slice(&mut bits[5 ..]);
To work around this, we can use [split_at_mut] to create two distinct
mutable sub-slices from a slice:
let mut data = 15u8; let bits = data.bits_mut::<Msb0>(); { let (left, right) = bits.split_at_mut(4); left[.. 2].swap_with_slice(&mut right[2 ..]); } assert_eq!(data, 0xCC);
pub unsafe fn align_to<U>(&self) -> (&Self, &BitSlice<O, U>, &Self) where
U: BitStore, [src]
U: BitStore,
Transmute the slice to a slice with a different backing store, ensuring alignment of the types is maintained.
This method splits the slice into three distinct slices: prefix, correctly aligned middle slice of a new backing type, and the suffix slice. The method does a best effort to make the middle slice the greatest length possible for a given type and input slice, but only your algorithm’s performance should depend on that, not its correctness.
Safety
This method is essentially a transmute with respect to the elements in
the returned middle slice, so all the usual caveats pertaining to
transmute::<T, U> also apply here.
Examples
Basic usage:
unsafe { let bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7]; let bits = bytes.bits::<Local>(); let (prefix, shorts, suffix) = bits.align_to::<u16>(); match prefix.len() { 0 => { assert_eq!(shorts, bits[.. 48]); assert_eq!(suffix, bits[48 ..]); }, 8 => { assert_eq!(prefix, bits[.. 8]); assert_eq!(shorts, bits[8 ..]); }, _ => unreachable!("This case will not occur") } }
pub unsafe fn align_to_mut<U>(
&mut self
) -> (&mut Self, &mut BitSlice<O, U>, &mut Self) where
U: BitStore, [src]
&mut self
) -> (&mut Self, &mut BitSlice<O, U>, &mut Self) where
U: BitStore,
Transmute the slice to a slice with a different backing store, ensuring alignment of the types is maintained.
This method splits the slice into three distinct slices: prefix, correctly aligned middle slice of a new backing type, and the suffix slice. The method does a best effort to make the middle slice the greatest length possible for a given type and input slice, but only your algorithm’s performance should depend on that, not its correctness.
Safety
This method is essentially a transmute with respect to the elements in
the returned middle slice, so all the usual caveats pertaining to
transmute::<T, U> also apply here.
Examples
Basic usage:
unsafe { let mut bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7]; let bits = bytes.bits_mut::<Local>(); let (prefix, shorts, suffix) = bits.align_to_mut::<u16>(); // same access and behavior as in `align_to` }
pub fn to_vec(&self) -> BitVec<O, T>[src]
Copies self into a new BitVec.
Examples
let data = [0u8, !0u8]; let bits = data.bits::<Local>(); let vec = bits.to_vec(); assert_eq!(bits, vec);
impl<O, T> BitSlice<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
pub fn empty<'a>() -> &'a Self[src]
Produces the empty slice. This is equivalent to &[] for Rust slices.
Returns
An empty &BitSlice handle.
Examples
use bitvec::prelude::*; let bits: &BitSlice = BitSlice::empty();
pub fn empty_mut<'a>() -> &'a mut Self[src]
Produces the empty mutable slice. This is equivalent to &mut [] for
Rust slices.
Returns
An empty &mut BitSlice handle.
Examples
use bitvec::prelude::*; let bits: &mut BitSlice = BitSlice::empty_mut();
pub fn from_element(elt: &T) -> &Self[src]
Produces an immutable BitSlice over a single element.
Parameters
elt: A reference to an element over which theBitSlicewill be created.
Returns
A BitSlice over the provided element.
Examples
use bitvec::prelude::*; let elt: u8 = !0; let bs: &BitSlice<Local, _> = BitSlice::from_element(&elt); assert!(bs.all());
pub fn from_element_mut(elt: &mut T) -> &mut Self[src]
Produces a mutable BitSlice over a single element.
Parameters
elt: A reference to an element over which theBitSlicewill be created.
Returns
A BitSlice over the provided element.
Examples
use bitvec::prelude::*; let mut elt: u8 = !0; let bs: &mut BitSlice<Local, _> = BitSlice::from_element_mut(&mut elt); bs.set(0, false); assert!(!bs.all());
pub fn from_slice(slice: &[T]) -> &Self[src]
Wraps a &[T: BitStore] in a &BitSlice<O: BitOrder, T>. The order must
be specified at the call site. The element type cannot be changed.
Parameters
src: The elements over which the newBitSlicewill operate.
Returns
A BitSlice representing the original element slice.
Panics
The source slice must not exceed the maximum number of elements that a
BitSlice can contain. This value is documented in BitPtr.
Examples
use bitvec::prelude::*; let src = [1, 2, 3]; let bits = BitSlice::<Msb0, u8>::from_slice(&src[..]); assert_eq!(bits.len(), 24); assert_eq!(bits.as_ref().len(), 3); assert!(bits[7]); // src[0] == 0b0000_0001 assert!(bits[14]); // src[1] == 0b0000_0010 assert!(bits[22]); // src[2] == 0b0000_0011 assert!(bits[23]);
pub fn from_slice_mut(slice: &mut [T]) -> &mut Self[src]
Wraps a &mut [T: BitStore] in a &mut BitSlice<O: BitOrder, T>. The
order must be specified by the call site. The element type cannot
be changed.
Parameters
src: The elements over which the newBitSlicewill operate.
Returns
A BitSlice representing the original element slice.
Panics
The source slice must not exceed the maximum number of elements that a
BitSlice can contain. This value is documented in BitPtr.
Examples
use bitvec::prelude::*; let mut src = [1, 2, 3]; let bits = BitSlice::<Lsb0, u8>::from_slice_mut(&mut src[..]); // The first bit is the LSb of the first element. assert!(bits[0]); bits.set(0, false); assert!(!bits[0]); assert_eq!(bits.as_ref(), &[0, 2, 3]);
pub fn set(&mut self, index: usize, value: bool)[src]
Sets the bit value at the given position.
Parameters
&mut selfindex: The bit index to set. It must be in the domain0 .. self.len().value: The value to be set,truefor1andfalsefor0.
Panics
This method panics if index is outside the slice domain.
Examples
use bitvec::prelude::*; let mut store = 8u8; let bits = store.bits_mut::<Msb0>(); assert!(!bits[3]); bits.set(3, true); assert!(bits[3]);
pub unsafe fn set_unchecked(&mut self, index: usize, value: bool)[src]
Sets a bit at an index, without doing bounds checking.
This is generally not recommended; use with caution! For a safe
alternative, see set.
Parameters
&mut selfindex: The bit index to retrieve. This index is not checked against the length ofself.
Effects
The bit at index is set to value.
Safety
This method is not safe. It performs raw pointer arithmetic to seek
from the start of the slice to the requested index, and set the bit
there. It does not inspect the length of self, and it is free to
perform out-of-bounds memory write access.
Use this method only when you have already performed the bounds check, and can guarantee that the call occurs with a safely in-bounds index.
Examples
This example uses a bit slice of length 2, and demonstrates out-of-bounds access to the last bit in the element.
use bitvec::prelude::*; let mut src = 0u8; { let bits = &mut src.bits_mut::<Msb0>()[2 .. 4]; assert_eq!(bits.len(), 2); unsafe { bits.set_unchecked(5, true); } } assert_eq!(src, 1);
pub fn at<'a, I>(&'a mut self, index: I) -> I::Mut where
I: BitSliceIndex<'a, O, T>, [src]
I: BitSliceIndex<'a, O, T>,
Use .get_mut() instead
Produces a write reference to a region of the slice.
This method corresponds to [Index::index], except that it produces a
writable reference rather than a read-only reference. See
BitSliceIndex for the possible types of the produced reference.
Use of this method locks the &mut BitSlice for the duration of the
produced reference’s lifetime. If you need multiple non-overlapping
write references into a single source &mut BitSlice, see the
::split_at_mut method.
Lifetimes
'a: Propagates the lifetime of the referent slice to the interior reference produced.
Parameters
&mut selfindex: Some value whose type can be used to indexBitSlices.
Returns
A writable reference into self, whose exact type is determined by
index’s implementation of BitSliceIndex. This may be either a
smaller &mut BitSlice when index is a range, or a BitMut proxy
type when index is a usize. See the BitMut documentation for
information on how to use it.
Panics
This panics if index is out of bounds of self.
Examples
use bitvec::prelude::*; let mut src = 0u8; let bits = src.bits_mut::<Msb0>(); assert!(!bits[0]); *bits.at(0) = true; // note the leading dereference. assert!(bits[0]);
This example shows multiple usage by using split_at_mut.
use bitvec::prelude::*; let mut src = 0u8; let bits = src.bits_mut::<Msb0>(); { let (mut a, rest) = bits.split_at_mut(2); let (mut b, rest) = rest.split_at_mut(3); *a.at(0) = true; *b.at(0) = true; *rest.at(0) = true; } assert_eq!(bits.as_slice()[0], 0b1010_0100); // a b rest
The above example splits the slice into three (the first, the second, and the rest) in order to hold multiple write references into the slice.
pub unsafe fn at_unchecked<'a, I>(&'a mut self, index: I) -> I::Mut where
I: BitSliceIndex<'a, O, T>, [src]
I: BitSliceIndex<'a, O, T>,
Use .get_unchecked_mut() instead
Version of at that does not perform boundary checking.
Safety
If index is outside the boundaries of self, then this function will
induce safety violations. The caller must ensure that index is within
the boundaries of self before calling.
pub unsafe fn split_at_unchecked(&self, mid: usize) -> (&Self, &Self)[src]
Version of split_at that does not perform boundary
checking.
Safety
If mid is outside the boundaries of self, then this function will
induce safety violations. The caller must ensure that mid is within
the boundaries of self before calling.
pub unsafe fn split_at_mut_unchecked(
&mut self,
mid: usize
) -> (&mut Self, &mut Self)[src]
&mut self,
mid: usize
) -> (&mut Self, &mut Self)
Version of split_at_mut that does not perform
boundary checking.
Safety
If mid is outside the boundaries of self, then this function will
induce safety violations. The caller must ensure that mid is within
the boundaries of self before calling.
pub unsafe fn swap_unchecked(&mut self, a: usize, b: usize)[src]
Version of swap that does not perform boundary checks.
Safety
a and b must be within the bounds of self, otherwise, the memory
access is unsound and may induce undefined behavior.
pub fn all(&self) -> bool[src]
Tests if all bits in the slice domain are set (logical ∧).
Truth Table
0 0 => 0
0 1 => 0
1 0 => 0
1 1 => 1
Parameters
&self
Returns
Whether all bits in the slice domain are set. The empty slice returns
true.
Examples
use bitvec::prelude::*; let bits = 0xFDu8.bits::<Msb0>(); assert!(bits[.. 4].all()); assert!(!bits[4 ..].all());
pub fn any(&self) -> bool[src]
Tests if any bit in the slice is set (logical ∨).
Truth Table
0 0 => 0
0 1 => 1
1 0 => 1
1 1 => 1
Parameters
&self
Returns
Whether any bit in the slice domain is set. The empty slice returns
false.
Examples
use bitvec::prelude::*; let bits = 0x40u8.bits::<Msb0>(); assert!(bits[.. 4].any()); assert!(!bits[4 ..].any());
pub fn not_all(&self) -> bool[src]
Tests if any bit in the slice is unset (logical ¬∧).
Truth Table
0 0 => 1
0 1 => 1
1 0 => 1
1 1 => 0
Parameters
- `&self
Returns
Whether any bit in the slice domain is unset.
Examples
use bitvec::prelude::*; let bits = 0xFDu8.bits::<Msb0>(); assert!(!bits[.. 4].not_all()); assert!(bits[4 ..].not_all());
pub fn not_any(&self) -> bool[src]
Tests if all bits in the slice are unset (logical ¬∨).
Truth Table
0 0 => 1
0 1 => 0
1 0 => 0
1 1 => 0
Parameters
&self
Returns
Whether all bits in the slice domain are unset.
Examples
use bitvec::prelude::*; let bits = 0x40u8.bits::<Msb0>(); assert!(!bits[.. 4].not_any()); assert!(bits[4 ..].not_any());
pub fn some(&self) -> bool[src]
Tests whether the slice has some, but not all, bits set and some, but not all, bits unset.
This is false if either all() or not_any() are true.
Truth Table
0 0 => 0
0 1 => 1
1 0 => 1
1 1 => 0
Parameters
&self
Returns
Whether the slice domain has mixed content. The empty slice returns
false.
Examples
use bitvec::prelude::*; let bits = 0b111_000_10u8.bits::<Msb0>(); assert!(!bits[0 .. 3].some()); assert!(!bits[3 .. 6].some()); assert!(bits[6 ..].some());
pub fn count_ones(&self) -> usize[src]
Counts how many bits are set high.
Parameters
&self
Returns
The number of high bits in the slice domain.
Examples
use bitvec::prelude::*; let bits = [0xFDu8, 0x25].bits::<Msb0>(); assert_eq!(bits.count_ones(), 10);
pub fn count_zeros(&self) -> usize[src]
Counts how many bits are set low.
Parameters
&self
Returns
The number of low bits in the slice domain.
Examples
use bitvec::prelude::*; let bits = [0xFDu8, 0x25].bits::<Msb0>(); assert_eq!(bits.count_zeros(), 6);
pub fn set_all(&mut self, value: bool)[src]
Set all bits in the slice to a value.
Parameters
&mut selfvalue: The bit value to which all bits in the slice will be set.
Examples
use bitvec::prelude::*; let mut src = 0u8; let bits = src.bits_mut::<Msb0>(); bits[2 .. 6].set_all(true); assert_eq!(bits.as_ref(), &[0b0011_1100]); bits[3 .. 5].set_all(false); assert_eq!(bits.as_ref(), &[0b0010_0100]); bits[.. 1].set_all(true); assert_eq!(bits.as_ref(), &[0b1010_0100]);
pub fn for_each<F>(&mut self, func: F) where
F: Fn(usize, bool) -> bool, [src]
F: Fn(usize, bool) -> bool,
Provides mutable traversal of the collection.
It is impossible to implement IndexMut on BitSlice, because bits do
not have addresses, so there can be no &mut u1. This method allows the
client to receive an enumerated bit, and provide a new bit to set at
each index.
Parameters
&mut selffunc: A function which receives a(usize, bool)pair of index and value, and returns a bool. It receives the bit at each position, and the return value is written back at that position.
Examples
use bitvec::prelude::*; let mut src = 0u8; { let bits = src.bits_mut::<Msb0>(); bits.for_each(|idx, _bit| idx % 3 == 0); } assert_eq!(src, 0b1001_0010);
pub fn add_assign_reverse<I>(&mut self, addend: I) -> bool where
I: IntoIterator<Item = bool>, [src]
I: IntoIterator<Item = bool>,
Performs “reverse” addition (left to right instead of right to left).
This addition interprets the slice, and the other addend, as having its
least significant bits first in the order and its most significant bits
last. This is most likely to be numerically useful under a
Lsb0 BitOrder type.
Parameters
&mut self: The addition usesselfas one addend, and writes the sum back intoself.addend: impl IntoIterator<Item=bool>: A stream of bits. When this is anotherBitSlice, iteration proceeds from left to right.
Return
The final carry bit is returned
Effects
Starting from index 0 and proceeding upwards until either self or
addend expires, the carry-propagated addition of self[i] and
addend[i] is written to self[i].
101111
+ 0010__ (the two missing bits are logically zero)
--------
100000 1 (the carry-out is returned)
Examples
use bitvec::prelude::*; let mut a = 0b0000_1010u8; let b = 0b0000_1100u8; // s = 1 0110 let ab = &mut a.bits_mut::<Lsb0>()[.. 4]; let bb = & b.bits::<Lsb0>()[.. 4]; let c = ab.add_assign_reverse(bb.iter().copied()); assert!(c); assert_eq!(a, 0b0000_0110u8);
Performance Notes
When using Lsb0 BitOrder types, this can be accelerated by
delegating the addition to the underlying types. This is a software
implementation of the ripple-carry adder, which has O(n) runtime in
the number of bits. The CPU is much faster, as it has access to
element-wise or vectorized addition operations.
If your use case sincerely needs binary-integer arithmetic operations on bit sets, please file an issue.
pub fn as_slice(&self) -> &[T][src]
Accesses the backing storage of the BitSlice as a slice of its
elements.
This will not include partially-owned edge elements, as they may be contended by other slice handles.
Parameters
&self
Returns
A slice of all the elements that the BitSlice uses for storage.
Examples
use bitvec::prelude::*; let src = [1u8, 66]; let bits = src.bits::<Msb0>(); let accum = bits.as_slice() .iter() .map(|elt| elt.count_ones()) .sum::<u32>(); assert_eq!(accum, 3);
pub fn as_mut_slice(&mut self) -> &mut [T][src]
Accesses the underlying store.
This will not include partially-owned edge elements, as they may be contended by other slice handles.
Examples
use bitvec::prelude::*; let mut src = [1u8, 64]; let bits = src.bits_mut::<Msb0>(); for elt in bits.as_mut_slice() { *elt |= 2; } assert_eq!(&[3, 66], bits.as_slice());
pub fn as_total_slice(&self) -> &[T::Access][src]
Accesses the underlying store, including contended partial elements.
This produces a slice of element wrappers that permit shared mutation,
rather than a slice of the bare T fundamentals.
Parameters
&self
Returns
A slice of all elements under the bit span, including any partially-owned edge elements, wrapped in safe shared-mutation types.
Trait Implementations
impl<O, T, I> AddAssign<I> for BitSlice<O, T> where
O: BitOrder,
T: BitStore,
I: IntoIterator<Item = bool>,
I::IntoIter: DoubleEndedIterator, [src]
O: BitOrder,
T: BitStore,
I: IntoIterator<Item = bool>,
I::IntoIter: DoubleEndedIterator,
Performs unsigned addition in place on a BitSlice.
If the addend bitstream is shorter than self, the addend is zero-extended at
the left (so that its final bit matches with self’s final bit). If the addend
is longer, the excess front length is unused.
Addition proceeds from the right ends of each slice towards the left. Because this trait is forbidden from returning anything, the final carry-out bit is discarded.
Note that, unlike BitVec, there is no subtraction implementation until I find
a subtraction algorithm that does not require modifying the subtrahend.
Subtraction can be implemented by negating the intended subtrahend yourself and
then using addition, or by using BitVecs instead of BitSlices.
Type Parameters
I: IntoIterator<Item=bool, IntoIter: DoubleEndedIterator>: The bitstream to add intoself. It must be finite and double-ended, since addition operates in reverse.
fn add_assign(&mut self, addend: I)[src]
Performs unsigned wrapping addition in place.
Examples
This example shows addition of a slice wrapping from max to zero.
use bitvec::prelude::*; let mut src = [0b1110_1111u8, 0b0000_0001]; let bits = src.bits_mut::<Msb0>(); let (nums, one) = bits.split_at_mut(12); let (accum, steps) = nums.split_at_mut(4); *accum += one.iter().copied(); assert_eq!(accum, &steps[.. 4]); *accum += one.iter().copied(); assert_eq!(accum, &steps[4 ..]);
impl<O, T> AsMut<[T]> for BitSlice<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
Provides write access to all fully-owned elements in the underlying memory buffer. This excludes the edge elements if they are partially-owned.
impl<O, T> AsMut<BitSlice<O, T>> for BitBox<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
impl<O, T> AsMut<BitSlice<O, T>> for BitVec<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
impl<O, T> AsRef<[T]> for BitSlice<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
Provides read-only access to all fully-owned elements in the underlying memory buffer. This excludes the edge elements if they are partially-owned.
impl<O, T> AsRef<BitSlice<O, T>> for Iter<'_, O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
impl<O, T> AsRef<BitSlice<O, T>> for BitBox<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
impl<O, T> AsRef<BitSlice<O, T>> for BitVec<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
impl<O, T> Binary for BitSlice<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
Write out the contents of a BitSlice as a numeric format.
These implementations render the bits of memory governed by a BitSlice as one
of the three numeric bases the Rust format system supports:
Binaryrenders each bit individually as0or1,Octalrenders clusters of three bits as the numbers0through7,Hexrenders clusters of four bits as the numbers[0-9A-F].
The formatters produce a word for each T element of memory. The chunked
formats (octal and hexadecimal) operate somewhat peculiarly: they show the
semantic value of the memory as interpreted by the BitOrder type parameter’s
implementation, and not the raw value of the memory as you might observe with a
debugger.
Specifically, the chunked formats read between zero and three (octal) or four
(hexadecimal) bits in BitOrder order out of a memory element, store those bits
in first-high/last-low order, and then interpret that sequence as a number in
their respective bases. This means that, for instance, the byte 3 (bit pattern
0b0000_0011), read in Lsb0 order, will produce the numerals "600"
(110 000 00) in octal, and "C0" (1100 0000) in hexadecimal.
If the memory element is exhausted before a chunk is filled with three or four
bits, then the number produced will have a lower value. The byte 0xFFu8 will
always produce the octal numeral "773" (111 111 11).
The decision to chunk numeral words by memory element, even though it breaks the octal chunking pattern was made so that the rendered text will still show memory boundaries for easier inspection.
impl<O, T, I> BitAndAssign<I> for BitSlice<O, T> where
O: BitOrder,
T: BitStore,
I: IntoIterator<Item = bool>, [src]
O: BitOrder,
T: BitStore,
I: IntoIterator<Item = bool>,
Performs the Boolean AND operation against another bitstream and writes
the result into self. If the other bitstream ends before self,, the
remaining bits of self are cleared.
Type Parameters
I: IntoIterator<Item=bool>: A stream of bits, which may be aBitSliceor some other bit producer as desired.
fn bitand_assign(&mut self, rhs: I)[src]
ANDs a bitstream into a slice.
Parameters
&mut selfrhs: The bitstream toANDintoself.
Examples
use bitvec::prelude::*; let mut store = [0b0101_0100u8]; let other = [0b0011_0000u8]; let lhs = store.bits_mut::<Msb0>(); let rhs = other.bits::<Msb0>(); lhs[.. 6] &= rhs[.. 4].iter().copied(); assert_eq!(store[0], 0b0001_0000);
impl<T> BitField for BitSlice<Lsb0, T> where
T: BitStore, [src]
T: BitStore,
fn load_le<U>(&self) -> U where
U: BitStore, [src]
U: BitStore,
fn load_be<U>(&self) -> U where
U: BitStore, [src]
U: BitStore,
fn store_le<U>(&mut self, value: U) where
U: BitStore, [src]
U: BitStore,
fn store_be<U>(&mut self, value: U) where
U: BitStore, [src]
U: BitStore,
fn load<U>(&self) -> U where
U: BitStore, [src]
U: BitStore,
fn store<U>(&mut self, value: U) where
U: BitStore, [src]
U: BitStore,
impl<T> BitField for BitSlice<Msb0, T> where
T: BitStore, [src]
T: BitStore,
fn load_le<U>(&self) -> U where
U: BitStore, [src]
U: BitStore,
fn load_be<U>(&self) -> U where
U: BitStore, [src]
U: BitStore,
fn store_le<U>(&mut self, value: U) where
U: BitStore, [src]
U: BitStore,
fn store_be<U>(&mut self, value: U) where
U: BitStore, [src]
U: BitStore,
fn load<U>(&self) -> U where
U: BitStore, [src]
U: BitStore,
fn store<U>(&mut self, value: U) where
U: BitStore, [src]
U: BitStore,
impl<O, T, I> BitOrAssign<I> for BitSlice<O, T> where
O: BitOrder,
T: BitStore,
I: IntoIterator<Item = bool>, [src]
O: BitOrder,
T: BitStore,
I: IntoIterator<Item = bool>,
Performs the Boolean OR operation against another bitstream and writes the
result into self. If the other bitstream ends before self, the remaining
bits of self are not affected.
Type Parameters
I: IntoIterator<Item=bool>: A stream of bits, which may be aBitSliceor some other bit producer as desired.
fn bitor_assign(&mut self, rhs: I)[src]
ORs a bitstream into a slice.
Parameters
&mut selfrhs: The bitstream toORintoself.
Examples
use bitvec::prelude::*; let mut store = [0b0101_0100u8]; let other = [0b0011_0000u8]; let lhs = store.bits_mut::<Msb0>(); let rhs = other.bits::<Msb0>(); lhs[.. 6] |= rhs[.. 4].iter().copied(); assert_eq!(store[0], 0b0111_0100);
impl<O, T, I> BitXorAssign<I> for BitSlice<O, T> where
O: BitOrder,
T: BitStore,
I: IntoIterator<Item = bool>, [src]
O: BitOrder,
T: BitStore,
I: IntoIterator<Item = bool>,
Performs the Boolean XOR operation against another bitstream and writes
the result into self. If the other bitstream ends before self, the remaining
bits of self are not affected.
Type Parameters
I: IntoIterator<Item=bool>: A stream of bits, which may be aBitSliceor some other bit producer as desired.
fn bitxor_assign(&mut self, rhs: I)[src]
XORs a bitstream into a slice.
Parameters
&mut selfrhs: The bitstream toXORintoself.
Examples
use bitvec::prelude::*; let mut store = [0b0101_0100u8]; let other = [0b0011_0000u8]; let lhs = store.bits_mut::<Msb0>(); let rhs = other.bits::<Msb0>(); lhs[.. 6] ^= rhs[.. 4].iter().copied(); assert_eq!(store[0], 0b0110_0100);
impl<O, T> Borrow<BitSlice<O, T>> for BitBox<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
impl<O, T> Borrow<BitSlice<O, T>> for BitVec<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
Signifies that BitSlice is the borrowed form of BitVec.
fn borrow(&self) -> &BitSlice<O, T>[src]
Borrows the BitVec as a BitSlice.
Parameters
&self
Returns
A borrowed BitSlice of the vector.
Examples
use bitvec::prelude::*; use std::borrow::Borrow; let bv = bitvec![0; 13]; let bs: &BitSlice = bv.borrow(); assert!(!bs[10]);
impl<O, T> BorrowMut<BitSlice<O, T>> for BitBox<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
fn borrow_mut(&mut self) -> &mut BitSlice<O, T>[src]
impl<O, T> BorrowMut<BitSlice<O, T>> for BitVec<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
Signifies that BitSlice is the borrowed form of BitVec.
fn borrow_mut(&mut self) -> &mut BitSlice<O, T>[src]
Mutably borrows the BitVec as a BitSlice.
Parameters
&mut self
Returns
A mutably borrowed BitSlice of the vector.
Examples
use bitvec::prelude::*; use std::borrow::BorrowMut; let mut bv = bitvec![0; 13]; let bs: &mut BitSlice = bv.borrow_mut(); assert!(!bs[10]); bs.set(10, true); assert!(bs[10]);
impl<O, T> Debug for BitSlice<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
Prints the BitSlice for debugging.
The output is of the form BitSlice<O, T> [ELT, *] where <O, T> is the order
and element type, with square brackets on each end of the bits and all the
elements of the array printed in binary. The printout is always in semantic
order, and may not reflect the underlying buffer. To see the underlying buffer,
use .as_total_slice().
The alternate character {:#?} prints each element on its own line, rather than
having all elements on the same line.
fn fmt(&self, fmt: &mut Formatter<'_>) -> Result[src]
Renders the BitSlice type header and contents for debug.
Examples
use bitvec::prelude::*; let src = [0b0101_0000_1111_0101u16, 0b00000000_0000_0010]; let bits = &src.bits::<Lsb0>()[.. 18]; assert_eq!( "BitSlice<Lsb0, u16> [1010111100001010, 01]", &format!("{:?}", bits), );
impl<'a, O, T> Default for &'a BitSlice<O, T> where
O: BitOrder,
T: 'a + BitStore, [src]
O: BitOrder,
T: 'a + BitStore,
impl<'a, O, T> Default for &'a mut BitSlice<O, T> where
O: BitOrder,
T: 'a + BitStore, [src]
O: BitOrder,
T: 'a + BitStore,
impl<O, T> Display for BitSlice<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
Prints the BitSlice for displaying.
This prints each element in turn, formatted in binary in semantic order (so the first bit seen is printed first and the last bit seen is printed last). Each element of storage is separated by a space for ease of reading.
The alternate character {:#} prints each element on its own line.
To see the in-memory representation, use .as_total_slice() to get access to
the raw elements and print that slice instead.
impl<O, T> Eq for BitSlice<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
impl<O, T> From<&'_ BitSlice<O, T>> for BitBox<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
impl<O, T> From<&'_ BitSlice<O, T>> for BitVec<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
impl<'a, O, T> From<&'a [T]> for &'a BitSlice<O, T> where
O: BitOrder,
T: 'a + BitStore, [src]
O: BitOrder,
T: 'a + BitStore,
impl<'a, O, T> From<&'a T> for &'a BitSlice<O, T> where
O: BitOrder,
T: 'a + BitStore, [src]
O: BitOrder,
T: 'a + BitStore,
impl<'a, O, T> From<&'a mut [T]> for &'a mut BitSlice<O, T> where
O: BitOrder,
T: 'a + BitStore, [src]
O: BitOrder,
T: 'a + BitStore,
fn from(src: &'a mut [T]) -> Self[src]
impl<'a, O, T> From<&'a mut T> for &'a mut BitSlice<O, T> where
O: BitOrder,
T: 'a + BitStore, [src]
O: BitOrder,
T: 'a + BitStore,
impl<O, T> Hash for BitSlice<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
Writes the contents of the BitSlice, in semantic bit order, into a hasher.
fn hash<H>(&self, hasher: &mut H) where
H: Hasher, [src]
H: Hasher,
pub fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher, 1.3.0[src]
H: Hasher,
impl<O, T> Index<Range<usize>> for BitSlice<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
type Output = Self
The returned type after indexing.
fn index(&self, range: Range<usize>) -> &Self[src]
impl<O, T> Index<RangeFrom<usize>> for BitSlice<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
type Output = Self
The returned type after indexing.
fn index(&self, range: RangeFrom<usize>) -> &Self[src]
impl<O, T> Index<RangeFull> for BitSlice<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
impl<O, T> Index<RangeInclusive<usize>> for BitSlice<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
type Output = Self
The returned type after indexing.
fn index(&self, range: RangeInclusive<usize>) -> &Self[src]
impl<O, T> Index<RangeTo<usize>> for BitSlice<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
type Output = Self
The returned type after indexing.
fn index(&self, range: RangeTo<usize>) -> &Self[src]
impl<O, T> Index<RangeToInclusive<usize>> for BitSlice<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
type Output = Self
The returned type after indexing.
fn index(&self, range: RangeToInclusive<usize>) -> &Self[src]
impl<O, T> Index<usize> for BitSlice<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
type Output = bool
The returned type after indexing.
fn index(&self, place: usize) -> &Self::Output[src]
impl<O, T> IndexMut<Range<usize>> for BitSlice<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
impl<O, T> IndexMut<RangeFrom<usize>> for BitSlice<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
impl<O, T> IndexMut<RangeFull> for BitSlice<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
impl<O, T> IndexMut<RangeInclusive<usize>> for BitSlice<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
fn index_mut(&mut self, range: RangeInclusive<usize>) -> &mut Self[src]
impl<O, T> IndexMut<RangeTo<usize>> for BitSlice<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
impl<O, T> IndexMut<RangeToInclusive<usize>> for BitSlice<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
fn index_mut(&mut self, range: RangeToInclusive<usize>) -> &mut Self[src]
impl<'a, O, T> IntoIterator for &'a BitSlice<O, T> where
O: BitOrder,
T: 'a + BitStore, [src]
O: BitOrder,
T: 'a + BitStore,
type Item = &'a bool
The type of the elements being iterated over.
type IntoIter = Iter<'a, O, T>
Which kind of iterator are we turning this into?
fn into_iter(self) -> Self::IntoIter[src]
impl<'a, O, T> IntoIterator for &'a mut BitSlice<O, T> where
O: BitOrder,
T: 'a + BitStore, [src]
O: BitOrder,
T: 'a + BitStore,
type Item = BitMut<'a, O, T>
The type of the elements being iterated over.
type IntoIter = IterMut<'a, O, T>
Which kind of iterator are we turning this into?
fn into_iter(self) -> Self::IntoIter[src]
impl<O, T> LowerHex for BitSlice<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
Write out the contents of a BitSlice as a numeric format.
These implementations render the bits of memory governed by a BitSlice as one
of the three numeric bases the Rust format system supports:
Binaryrenders each bit individually as0or1,Octalrenders clusters of three bits as the numbers0through7,Hexrenders clusters of four bits as the numbers[0-9A-F].
The formatters produce a word for each T element of memory. The chunked
formats (octal and hexadecimal) operate somewhat peculiarly: they show the
semantic value of the memory as interpreted by the BitOrder type parameter’s
implementation, and not the raw value of the memory as you might observe with a
debugger.
Specifically, the chunked formats read between zero and three (octal) or four
(hexadecimal) bits in BitOrder order out of a memory element, store those bits
in first-high/last-low order, and then interpret that sequence as a number in
their respective bases. This means that, for instance, the byte 3 (bit pattern
0b0000_0011), read in Lsb0 order, will produce the numerals "600"
(110 000 00) in octal, and "C0" (1100 0000) in hexadecimal.
If the memory element is exhausted before a chunk is filled with three or four
bits, then the number produced will have a lower value. The byte 0xFFu8 will
always produce the octal numeral "773" (111 111 11).
The decision to chunk numeral words by memory element, even though it breaks the octal chunking pattern was made so that the rendered text will still show memory boundaries for easier inspection.
impl<'a, O, T> Neg for &'a mut BitSlice<O, T> where
O: BitOrder,
T: 'a + BitStore, [src]
O: BitOrder,
T: 'a + BitStore,
Performs fixed-width 2’s-complement negation of a BitSlice.
Unlike the ! operator (Not trait), the unary - operator treats the
BitSlice as if it represents a signed 2’s-complement integer of fixed
width. The negation of a number in 2’s complement is defined as its
inversion (using !) plus one, and on fixed-width numbers has the following
discontinuities:
- A slice whose bits are all zero is considered to represent the number zero which negates as itself.
- A slice whose bits are all one is considered to represent the most negative number, which has no correpsonding positive number, and thus negates as zero.
This behavior was chosen so that all possible values would have some
output, and so that repeated application converges at idempotence. The most
negative input can never be reached by negation, but --MOST_NEG converges
at the least unreasonable fallback value, 0.
Because BitSlice cannot move, the negation is performed in place.
type Output = Self
The resulting type after applying the - operator.
fn neg(self) -> Self::Output[src]
Perform 2’s-complement fixed-width negation.
Negation is accomplished by inverting the bits and adding one. This has
one edge case: 1000…, the most negative number for its width, will
negate to zero instead of itself. It thas no corresponding positive
number to which it can negate.
Parameters
self
Examples
The contortions shown here are a result of this operator applying to a
mutable reference, and this example balancing access to the original
BitVec for comparison with aquiring a mutable borrow as a slice to
ensure that the BitSlice implementation is used, not the BitVec.
Negate an arbitrary positive number (first bit unset).
use bitvec::prelude::*; let mut src = 0b0110_1010u8; let bits = src.bits_mut::<Msb0>(); eprintln!("{:?}", bits.split_at(4)); let num = &mut bits[.. 4]; -num; eprintln!("{:?}", bits.split_at(4)); assert_eq!(&bits[.. 4], &bits[4 ..]);
Negate an arbitrary negative number. This example will use the above result to demonstrate round-trip correctness.
use bitvec::prelude::*; let mut src = 0b1010_0110u8; let bits = src.bits_mut::<Msb0>(); let num = &mut bits[.. 4]; -num; assert_eq!(&bits[.. 4], &bits[4 ..]);
Negate the most negative number, which will become zero, and show convergence at zero.
use bitvec::prelude::*; let mut src = 128u8; let bits = src.bits_mut::<Msb0>(); let num = &mut bits[..]; -num; assert!(bits.not_any()); let num = &mut bits[..]; -num; assert!(bits.not_any());
impl<'a, O, T> Not for &'a mut BitSlice<O, T> where
O: BitOrder,
T: 'a + BitStore, [src]
O: BitOrder,
T: 'a + BitStore,
Flips all bits in the slice, in place.
type Output = Self
The resulting type after applying the ! operator.
fn not(self) -> Self::Output[src]
Inverts all bits in the slice.
This will not affect bits outside the slice in slice storage elements.
Parameters
self
Examples
use bitvec::prelude::*; let mut src = [0u8; 2]; let bits = &mut src.bits_mut::<Msb0>()[2 .. 14]; let _ = !bits; // The `bits` binding is consumed by the `!` operator, and a new // reference is returned. // assert_eq!(bits.as_ref(), &[!0, !0]); assert_eq!(src, [0x3F, 0xFC]);
impl<O, T> Octal for BitSlice<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
Write out the contents of a BitSlice as a numeric format.
These implementations render the bits of memory governed by a BitSlice as one
of the three numeric bases the Rust format system supports:
Binaryrenders each bit individually as0or1,Octalrenders clusters of three bits as the numbers0through7,Hexrenders clusters of four bits as the numbers[0-9A-F].
The formatters produce a word for each T element of memory. The chunked
formats (octal and hexadecimal) operate somewhat peculiarly: they show the
semantic value of the memory as interpreted by the BitOrder type parameter’s
implementation, and not the raw value of the memory as you might observe with a
debugger.
Specifically, the chunked formats read between zero and three (octal) or four
(hexadecimal) bits in BitOrder order out of a memory element, store those bits
in first-high/last-low order, and then interpret that sequence as a number in
their respective bases. This means that, for instance, the byte 3 (bit pattern
0b0000_0011), read in Lsb0 order, will produce the numerals "600"
(110 000 00) in octal, and "C0" (1100 0000) in hexadecimal.
If the memory element is exhausted before a chunk is filled with three or four
bits, then the number produced will have a lower value. The byte 0xFFu8 will
always produce the octal numeral "773" (111 111 11).
The decision to chunk numeral words by memory element, even though it breaks the octal chunking pattern was made so that the rendered text will still show memory boundaries for easier inspection.
impl<O, T> Ord for BitSlice<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
fn cmp(&self, rhs: &Self) -> Ordering[src]
#[must_use]pub fn max(self, other: Self) -> Self1.21.0[src]
#[must_use]pub fn min(self, other: Self) -> Self1.21.0[src]
#[must_use]pub fn clamp(self, min: Self, max: Self) -> Self1.50.0[src]
impl<A, B, C, D> PartialEq<&'_ BitSlice<C, D>> for BitSlice<A, B> where
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore, [src]
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore,
fn eq(&self, rhs: &&BitSlice<C, D>) -> bool[src]
#[must_use]pub fn ne(&self, other: &Rhs) -> bool1.0.0[src]
impl<A, B, C, D> PartialEq<&'_ BitSlice<C, D>> for BitVec<A, B> where
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore, [src]
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore,
fn eq(&self, rhs: &&BitSlice<C, D>) -> bool[src]
#[must_use]pub fn ne(&self, other: &Rhs) -> bool1.0.0[src]
impl<A, B, C, D> PartialEq<BitBox<C, D>> for BitSlice<A, B> where
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore, [src]
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore,
fn eq(&self, rhs: &BitBox<C, D>) -> bool[src]
#[must_use]pub fn ne(&self, other: &Rhs) -> bool1.0.0[src]
impl<A, B, C, D> PartialEq<BitSlice<C, D>> for BitSlice<A, B> where
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore, [src]
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore,
Tests if two BitSlices are semantically — not bitwise — equal.
It is valid to compare two slices of different ordering or element types.
The equality condition requires that they have the same number of total bits and that each pair of bits in semantic order are identical.
fn eq(&self, rhs: &BitSlice<C, D>) -> bool[src]
Performas a comparison by ==.
Examples
use bitvec::prelude::*; let lsrc = [8u8, 16, 32, 0]; let rsrc = 0x10_08_04_00u32; let lbits = lsrc.bits::<Lsb0>(); let rbits = rsrc.bits::<Msb0>(); assert_eq!(lbits, rbits);
#[must_use]pub fn ne(&self, other: &Rhs) -> bool1.0.0[src]
impl<A, B, C, D> PartialEq<BitSlice<C, D>> for &BitSlice<A, B> where
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore, [src]
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore,
fn eq(&self, rhs: &BitSlice<C, D>) -> bool[src]
#[must_use]pub fn ne(&self, other: &Rhs) -> bool1.0.0[src]
impl<A, B, C, D> PartialEq<BitSlice<C, D>> for BitBox<A, B> where
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore, [src]
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore,
fn eq(&self, rhs: &BitSlice<C, D>) -> bool[src]
#[must_use]pub fn ne(&self, other: &Rhs) -> bool1.0.0[src]
impl<A, B, C, D> PartialEq<BitSlice<C, D>> for BitVec<A, B> where
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore, [src]
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore,
fn eq(&self, rhs: &BitSlice<C, D>) -> bool[src]
#[must_use]pub fn ne(&self, other: &Rhs) -> bool1.0.0[src]
impl<A, B, C, D> PartialEq<BitVec<C, D>> for BitSlice<A, B> where
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore, [src]
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore,
fn eq(&self, rhs: &BitVec<C, D>) -> bool[src]
#[must_use]pub fn ne(&self, other: &Rhs) -> bool1.0.0[src]
impl<A, B, C, D> PartialEq<BitVec<C, D>> for &BitSlice<A, B> where
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore, [src]
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore,
fn eq(&self, rhs: &BitVec<C, D>) -> bool[src]
#[must_use]pub fn ne(&self, other: &Rhs) -> bool1.0.0[src]
impl<A, B, C, D> PartialOrd<&'_ BitSlice<C, D>> for BitSlice<A, B> where
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore, [src]
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore,
fn partial_cmp(&self, rhs: &&BitSlice<C, D>) -> Option<Ordering>[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool1.0.0[src]
impl<A, B, C, D> PartialOrd<&'_ BitSlice<C, D>> for BitVec<A, B> where
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore, [src]
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore,
fn partial_cmp(&self, rhs: &&BitSlice<C, D>) -> Option<Ordering>[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool1.0.0[src]
impl<A, B, C, D> PartialOrd<BitBox<C, D>> for BitSlice<A, B> where
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore, [src]
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore,
fn partial_cmp(&self, rhs: &BitBox<C, D>) -> Option<Ordering>[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool1.0.0[src]
impl<A, B, C, D> PartialOrd<BitSlice<C, D>> for BitSlice<A, B> where
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore, [src]
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore,
Compares two BitSlices by semantic — not bitwise — ordering.
The comparison sorts by testing each index for one slice to have a set bit where the other has an unset bit. If the slices are different, the slice with the set bit sorts greater than the slice with the unset bit.
If one of the slices is exhausted before they differ, the longer slice is greater.
fn partial_cmp(&self, rhs: &BitSlice<C, D>) -> Option<Ordering>[src]
Performs a comparison by < or >.
Examples
use bitvec::prelude::*; let src = 0x45u8; let bits = src.bits::<Msb0>(); let a = &bits[0 .. 3]; // 010 let b = &bits[0 .. 4]; // 0100 let c = &bits[0 .. 5]; // 01000 let d = &bits[4 .. 8]; // 0101 assert!(a < b); assert!(b < c); assert!(c < d);
#[must_use]pub fn lt(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool1.0.0[src]
impl<A, B, C, D> PartialOrd<BitSlice<C, D>> for &BitSlice<A, B> where
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore, [src]
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore,
fn partial_cmp(&self, rhs: &BitSlice<C, D>) -> Option<Ordering>[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool1.0.0[src]
impl<A, B, C, D> PartialOrd<BitSlice<C, D>> for BitBox<A, B> where
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore, [src]
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore,
fn partial_cmp(&self, rhs: &BitSlice<C, D>) -> Option<Ordering>[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool1.0.0[src]
impl<A, B, C, D> PartialOrd<BitSlice<C, D>> for BitVec<A, B> where
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore, [src]
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore,
fn partial_cmp(&self, rhs: &BitSlice<C, D>) -> Option<Ordering>[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool1.0.0[src]
impl<A, B, C, D> PartialOrd<BitVec<C, D>> for BitSlice<A, B> where
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore, [src]
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore,
fn partial_cmp(&self, rhs: &BitVec<C, D>) -> Option<Ordering>[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool1.0.0[src]
impl<A, B, C, D> PartialOrd<BitVec<C, D>> for &BitSlice<A, B> where
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore, [src]
A: BitOrder,
B: BitStore,
C: BitOrder,
D: BitStore,
fn partial_cmp(&self, rhs: &BitVec<C, D>) -> Option<Ordering>[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool1.0.0[src]
impl<O, T> ShlAssign<usize> for BitSlice<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
Shifts all bits in the array to the left — DOWN AND TOWARDS THE FRONT.
On fundamentals, the left-shift operator << moves bits away from the origin
and towards the ceiling. This is because we label the bits in a primitive with
the minimum on the right and the maximum on the left, which is big-endian bit
order. This increases the value of the primitive being shifted.
THAT IS NOT HOW BitSlice WORKS!
BitSlice defines its layout with the minimum on the left and the maximum on
the right! Thus, left-shifting moves bits towards the minimum.
In Msb0 order, the effect in memory will be what you expect the << operator
to do.
In Lsb0 order, the effect will be equivalent to using >> on the
fundamentals in memory!
Notes
In order to preserve the effecs in memory that this operator traditionally expects, the bits that are emptied by this operation are zeroed rather than left to their old value.
The shift amount is modulated against the array length, so it is not an error to pass a shift amount greater than the array length.
A shift amount of zero is a no-op, and returns immediately.
fn shl_assign(&mut self, shamt: usize)[src]
Shifts a slice left, in place.
Parameters
&mut selfshamt: The shift amount. If this is greater than the length, then the slice is zeroed immediately.
Examples
use bitvec::prelude::*; let mut src = [0x4Bu8, 0xA5]; let bits = &mut src.bits_mut::<Msb0>()[2 .. 14]; *bits <<= 3; assert_eq!(src, [0b01_011_101, 0b001_000_01]);
impl<O, T> ShrAssign<usize> for BitSlice<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
Shifts all bits in the array to the right — UP AND TOWARDS THE BACK.
On fundamentals, the right-shift operator >> moves bits towards the origin and
away from the ceiling. This is because we label the bits in a primitive with the
minimum on the right and the maximum on the left, which is big-endian bit order.
This decreases the value of the primitive being shifted.
THAT IS NOT HOW BitSlice WORKS!
BitSlice defines its layout with the minimum on the left and the maximum on
the right! Thus, right-shifting moves bits towards the maximum.
In Msb0 order, the effect in memory will be what you expect the >> operator
to do.
In Lsb0 order, the effect will be equivalent to using << on the
fundamentals in memory!
Notes
In order to preserve the effects in memory that this operator traditionally expects, the bits that are emptied by this operation are zeroed rather than left to their old value.
The shift amount is modulated against the array length, so it is not an error to pass a shift amount greater than the array length.
A shift amount of zero is a no-op, and returns immediately.
fn shr_assign(&mut self, shamt: usize)[src]
Shifts a slice right, in place.
Parameters
&mut selfshamt: The shift amount. If this is greater than the length, then the slice is zeroed immediately.
Examples
use bitvec::prelude::*; let mut src = [0x4Bu8, 0xA5]; let bits = &mut src.bits_mut::<Msb0>()[2 .. 14]; *bits >>= 3; assert_eq!(src, [0b01_000_00_1, 0b011_101_01])
impl<O, T> ToOwned for BitSlice<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
type Owned = BitVec<O, T>
The resulting type after obtaining ownership.
fn to_owned(&self) -> Self::Owned[src]
pub fn clone_into(&self, target: &mut Self::Owned)[src]
impl<O, T> UpperHex for BitSlice<O, T> where
O: BitOrder,
T: BitStore, [src]
O: BitOrder,
T: BitStore,
Write out the contents of a BitSlice as a numeric format.
These implementations render the bits of memory governed by a BitSlice as one
of the three numeric bases the Rust format system supports:
Binaryrenders each bit individually as0or1,Octalrenders clusters of three bits as the numbers0through7,Hexrenders clusters of four bits as the numbers[0-9A-F].
The formatters produce a word for each T element of memory. The chunked
formats (octal and hexadecimal) operate somewhat peculiarly: they show the
semantic value of the memory as interpreted by the BitOrder type parameter’s
implementation, and not the raw value of the memory as you might observe with a
debugger.
Specifically, the chunked formats read between zero and three (octal) or four
(hexadecimal) bits in BitOrder order out of a memory element, store those bits
in first-high/last-low order, and then interpret that sequence as a number in
their respective bases. This means that, for instance, the byte 3 (bit pattern
0b0000_0011), read in Lsb0 order, will produce the numerals "600"
(110 000 00) in octal, and "C0" (1100 0000) in hexadecimal.
If the memory element is exhausted before a chunk is filled with three or four
bits, then the number produced will have a lower value. The byte 0xFFu8 will
always produce the octal numeral "773" (111 111 11).
The decision to chunk numeral words by memory element, even though it breaks the octal chunking pattern was made so that the rendered text will still show memory boundaries for easier inspection.
Auto Trait Implementations
impl<O, T> RefUnwindSafe for BitSlice<O, T> where
O: RefUnwindSafe,
T: RefUnwindSafe,
O: RefUnwindSafe,
T: RefUnwindSafe,
impl<O, T> Send for BitSlice<O, T> where
O: Send,
O: Send,
impl<O = Lsb0, T = usize> !Sized for BitSlice<O, T>
impl<O, T> Sync for BitSlice<O, T> where
O: Sync,
O: Sync,
impl<O, T> Unpin for BitSlice<O, T> where
O: Unpin,
T: Unpin,
O: Unpin,
T: Unpin,
impl<O, T> UnwindSafe for BitSlice<O, T> where
O: UnwindSafe,
T: UnwindSafe,
O: UnwindSafe,
T: UnwindSafe,
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized, [src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized, [src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized, [src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T[src]
impl<T> From<T> for T[src]
impl<T, U> Into<U> for T where
U: From<T>, [src]
U: From<T>,
impl<T> ToString for T where
T: Display + ?Sized, [src]
T: Display + ?Sized,
impl<T, U> TryFrom<U> for T where
U: Into<T>, [src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>, [src]
U: TryFrom<T>,