Struct chrono::naive::NaiveDateTime [−][src]
ISO 8601 combined date and time without timezone.
Example
NaiveDateTime
is commonly created from NaiveDate
.
use chrono::{NaiveDate, NaiveDateTime}; let dt: NaiveDateTime = NaiveDate::from_ymd(2016, 7, 8).and_hms(9, 10, 11);
You can use typical date-like and time-like methods, provided that relevant traits are in the scope.
use chrono::{Datelike, Timelike, Weekday}; assert_eq!(dt.weekday(), Weekday::Fri); assert_eq!(dt.num_seconds_from_midnight(), 33011);
Implementations
impl NaiveDateTime
[src]
pub fn new(date: NaiveDate, time: NaiveTime) -> NaiveDateTime
[src]
Makes a new NaiveDateTime
from date and time components.
Equivalent to date.and_time(time)
and many other helper constructors on NaiveDate
.
Example
use chrono::{NaiveDate, NaiveTime, NaiveDateTime}; let d = NaiveDate::from_ymd(2015, 6, 3); let t = NaiveTime::from_hms_milli(12, 34, 56, 789); let dt = NaiveDateTime::new(d, t); assert_eq!(dt.date(), d); assert_eq!(dt.time(), t);
pub fn from_timestamp(secs: i64, nsecs: u32) -> NaiveDateTime
[src]
Makes a new NaiveDateTime
corresponding to a UTC date and time,
from the number of non-leap seconds
since the midnight UTC on January 1, 1970 (aka “UNIX timestamp”)
and the number of nanoseconds since the last whole non-leap second.
For a non-naive version of this function see
TimeZone::timestamp
.
The nanosecond part can exceed 1,000,000,000 in order to represent the leap second. (The true “UNIX timestamp” cannot represent a leap second unambiguously.)
Panics on the out-of-range number of seconds and/or invalid nanosecond.
Example
use chrono::{NaiveDateTime, NaiveDate}; let dt = NaiveDateTime::from_timestamp(0, 42_000_000); assert_eq!(dt, NaiveDate::from_ymd(1970, 1, 1).and_hms_milli(0, 0, 0, 42)); let dt = NaiveDateTime::from_timestamp(1_000_000_000, 0); assert_eq!(dt, NaiveDate::from_ymd(2001, 9, 9).and_hms(1, 46, 40));
pub fn from_timestamp_opt(secs: i64, nsecs: u32) -> Option<NaiveDateTime>
[src]
Makes a new NaiveDateTime
corresponding to a UTC date and time,
from the number of non-leap seconds
since the midnight UTC on January 1, 1970 (aka “UNIX timestamp”)
and the number of nanoseconds since the last whole non-leap second.
The nanosecond part can exceed 1,000,000,000 in order to represent the leap second. (The true “UNIX timestamp” cannot represent a leap second unambiguously.)
Returns None
on the out-of-range number of seconds and/or invalid nanosecond.
Example
use chrono::{NaiveDateTime, NaiveDate}; use std::i64; let from_timestamp_opt = NaiveDateTime::from_timestamp_opt; assert!(from_timestamp_opt(0, 0).is_some()); assert!(from_timestamp_opt(0, 999_999_999).is_some()); assert!(from_timestamp_opt(0, 1_500_000_000).is_some()); // leap second assert!(from_timestamp_opt(0, 2_000_000_000).is_none()); assert!(from_timestamp_opt(i64::MAX, 0).is_none());
pub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<NaiveDateTime>
[src]
Parses a string with the specified format string and returns a new NaiveDateTime
.
See the format::strftime
module
on the supported escape sequences.
Example
use chrono::{NaiveDateTime, NaiveDate}; let parse_from_str = NaiveDateTime::parse_from_str; assert_eq!(parse_from_str("2015-09-05 23:56:04", "%Y-%m-%d %H:%M:%S"), Ok(NaiveDate::from_ymd(2015, 9, 5).and_hms(23, 56, 4))); assert_eq!(parse_from_str("5sep2015pm012345.6789", "%d%b%Y%p%I%M%S%.f"), Ok(NaiveDate::from_ymd(2015, 9, 5).and_hms_micro(13, 23, 45, 678_900)));
Offset is ignored for the purpose of parsing.
assert_eq!(parse_from_str("2014-5-17T12:34:56+09:30", "%Y-%m-%dT%H:%M:%S%z"), Ok(NaiveDate::from_ymd(2014, 5, 17).and_hms(12, 34, 56)));
Leap seconds are correctly handled by
treating any time of the form hh:mm:60
as a leap second.
(This equally applies to the formatting, so the round trip is possible.)
assert_eq!(parse_from_str("2015-07-01 08:59:60.123", "%Y-%m-%d %H:%M:%S%.f"), Ok(NaiveDate::from_ymd(2015, 7, 1).and_hms_milli(8, 59, 59, 1_123)));
Missing seconds are assumed to be zero, but out-of-bound times or insufficient fields are errors otherwise.
assert_eq!(parse_from_str("94/9/4 7:15", "%y/%m/%d %H:%M"), Ok(NaiveDate::from_ymd(1994, 9, 4).and_hms(7, 15, 0))); assert!(parse_from_str("04m33s", "%Mm%Ss").is_err()); assert!(parse_from_str("94/9/4 12", "%y/%m/%d %H").is_err()); assert!(parse_from_str("94/9/4 17:60", "%y/%m/%d %H:%M").is_err()); assert!(parse_from_str("94/9/4 24:00:00", "%y/%m/%d %H:%M:%S").is_err());
All parsed fields should be consistent to each other, otherwise it’s an error.
let fmt = "%Y-%m-%d %H:%M:%S = UNIX timestamp %s"; assert!(parse_from_str("2001-09-09 01:46:39 = UNIX timestamp 999999999", fmt).is_ok()); assert!(parse_from_str("1970-01-01 00:00:00 = UNIX timestamp 1", fmt).is_err());
pub fn date(&self) -> NaiveDate
[src]
Retrieves a date component.
Example
use chrono::NaiveDate; let dt = NaiveDate::from_ymd(2016, 7, 8).and_hms(9, 10, 11); assert_eq!(dt.date(), NaiveDate::from_ymd(2016, 7, 8));
pub fn time(&self) -> NaiveTime
[src]
Retrieves a time component.
Example
use chrono::{NaiveDate, NaiveTime}; let dt = NaiveDate::from_ymd(2016, 7, 8).and_hms(9, 10, 11); assert_eq!(dt.time(), NaiveTime::from_hms(9, 10, 11));
pub fn timestamp(&self) -> i64
[src]
Returns the number of non-leap seconds since the midnight on January 1, 1970.
Note that this does not account for the timezone! The true “UNIX timestamp” would count seconds since the midnight UTC on the epoch.
Example
use chrono::NaiveDate; let dt = NaiveDate::from_ymd(1970, 1, 1).and_hms_milli(0, 0, 1, 980); assert_eq!(dt.timestamp(), 1); let dt = NaiveDate::from_ymd(2001, 9, 9).and_hms(1, 46, 40); assert_eq!(dt.timestamp(), 1_000_000_000); let dt = NaiveDate::from_ymd(1969, 12, 31).and_hms(23, 59, 59); assert_eq!(dt.timestamp(), -1); let dt = NaiveDate::from_ymd(-1, 1, 1).and_hms(0, 0, 0); assert_eq!(dt.timestamp(), -62198755200);
pub fn timestamp_millis(&self) -> i64
[src]
Returns the number of non-leap milliseconds since midnight on January 1, 1970.
Note that this does not account for the timezone! The true “UNIX timestamp” would count seconds since the midnight UTC on the epoch.
Note also that this does reduce the number of years that can be represented from ~584 Billion to ~584 Million. (If this is a problem, please file an issue to let me know what domain needs millisecond precision over billions of years, I’m curious.)
Example
use chrono::NaiveDate; let dt = NaiveDate::from_ymd(1970, 1, 1).and_hms_milli(0, 0, 1, 444); assert_eq!(dt.timestamp_millis(), 1_444); let dt = NaiveDate::from_ymd(2001, 9, 9).and_hms_milli(1, 46, 40, 555); assert_eq!(dt.timestamp_millis(), 1_000_000_000_555); let dt = NaiveDate::from_ymd(1969, 12, 31).and_hms_milli(23, 59, 59, 100); assert_eq!(dt.timestamp_millis(), -900);
pub fn timestamp_nanos(&self) -> i64
[src]
Returns the number of non-leap nanoseconds since midnight on January 1, 1970.
Note that this does not account for the timezone! The true “UNIX timestamp” would count seconds since the midnight UTC on the epoch.
Panics
Note also that this does reduce the number of years that can be represented from ~584 Billion to ~584 years. The dates that can be represented as nanoseconds are between 1677-09-21T00:12:44.0 and 2262-04-11T23:47:16.854775804.
(If this is a problem, please file an issue to let me know what domain needs nanosecond precision over millennia, I’m curious.)
Example
use chrono::{NaiveDate, NaiveDateTime}; let dt = NaiveDate::from_ymd(1970, 1, 1).and_hms_nano(0, 0, 1, 444); assert_eq!(dt.timestamp_nanos(), 1_000_000_444); let dt = NaiveDate::from_ymd(2001, 9, 9).and_hms_nano(1, 46, 40, 555); const A_BILLION: i64 = 1_000_000_000; let nanos = dt.timestamp_nanos(); assert_eq!(nanos, 1_000_000_000_000_000_555); assert_eq!( dt, NaiveDateTime::from_timestamp(nanos / A_BILLION, (nanos % A_BILLION) as u32) );
pub fn timestamp_subsec_millis(&self) -> u32
[src]
Returns the number of milliseconds since the last whole non-leap second.
The return value ranges from 0 to 999, or for leap seconds, to 1,999.
Example
use chrono::NaiveDate; let dt = NaiveDate::from_ymd(2016, 7, 8).and_hms_nano(9, 10, 11, 123_456_789); assert_eq!(dt.timestamp_subsec_millis(), 123); let dt = NaiveDate::from_ymd(2015, 7, 1).and_hms_nano(8, 59, 59, 1_234_567_890); assert_eq!(dt.timestamp_subsec_millis(), 1_234);
pub fn timestamp_subsec_micros(&self) -> u32
[src]
Returns the number of microseconds since the last whole non-leap second.
The return value ranges from 0 to 999,999, or for leap seconds, to 1,999,999.
Example
use chrono::NaiveDate; let dt = NaiveDate::from_ymd(2016, 7, 8).and_hms_nano(9, 10, 11, 123_456_789); assert_eq!(dt.timestamp_subsec_micros(), 123_456); let dt = NaiveDate::from_ymd(2015, 7, 1).and_hms_nano(8, 59, 59, 1_234_567_890); assert_eq!(dt.timestamp_subsec_micros(), 1_234_567);
pub fn timestamp_subsec_nanos(&self) -> u32
[src]
Returns the number of nanoseconds since the last whole non-leap second.
The return value ranges from 0 to 999,999,999, or for leap seconds, to 1,999,999,999.
Example
use chrono::NaiveDate; let dt = NaiveDate::from_ymd(2016, 7, 8).and_hms_nano(9, 10, 11, 123_456_789); assert_eq!(dt.timestamp_subsec_nanos(), 123_456_789); let dt = NaiveDate::from_ymd(2015, 7, 1).and_hms_nano(8, 59, 59, 1_234_567_890); assert_eq!(dt.timestamp_subsec_nanos(), 1_234_567_890);
pub fn checked_add_signed(self, rhs: OldDuration) -> Option<NaiveDateTime>
[src]
Adds given Duration
to the current date and time.
As a part of Chrono’s leap second handling,
the addition assumes that there is no leap second ever,
except when the NaiveDateTime
itself represents a leap second
in which case the assumption becomes that there is exactly a single leap second ever.
Returns None
when it will result in overflow.
Example
use chrono::{Duration, NaiveDate}; let from_ymd = NaiveDate::from_ymd; let d = from_ymd(2016, 7, 8); let hms = |h, m, s| d.and_hms(h, m, s); assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::zero()), Some(hms(3, 5, 7))); assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::seconds(1)), Some(hms(3, 5, 8))); assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::seconds(-1)), Some(hms(3, 5, 6))); assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::seconds(3600 + 60)), Some(hms(4, 6, 7))); assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::seconds(86_400)), Some(from_ymd(2016, 7, 9).and_hms(3, 5, 7))); let hmsm = |h, m, s, milli| d.and_hms_milli(h, m, s, milli); assert_eq!(hmsm(3, 5, 7, 980).checked_add_signed(Duration::milliseconds(450)), Some(hmsm(3, 5, 8, 430)));
Overflow returns None
.
assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::days(1_000_000_000)), None);
Leap seconds are handled, but the addition assumes that it is the only leap second happened.
let leap = hmsm(3, 5, 59, 1_300); assert_eq!(leap.checked_add_signed(Duration::zero()), Some(hmsm(3, 5, 59, 1_300))); assert_eq!(leap.checked_add_signed(Duration::milliseconds(-500)), Some(hmsm(3, 5, 59, 800))); assert_eq!(leap.checked_add_signed(Duration::milliseconds(500)), Some(hmsm(3, 5, 59, 1_800))); assert_eq!(leap.checked_add_signed(Duration::milliseconds(800)), Some(hmsm(3, 6, 0, 100))); assert_eq!(leap.checked_add_signed(Duration::seconds(10)), Some(hmsm(3, 6, 9, 300))); assert_eq!(leap.checked_add_signed(Duration::seconds(-10)), Some(hmsm(3, 5, 50, 300))); assert_eq!(leap.checked_add_signed(Duration::days(1)), Some(from_ymd(2016, 7, 9).and_hms_milli(3, 5, 59, 300)));
pub fn checked_sub_signed(self, rhs: OldDuration) -> Option<NaiveDateTime>
[src]
Subtracts given Duration
from the current date and time.
As a part of Chrono’s leap second handling,
the subtraction assumes that there is no leap second ever,
except when the NaiveDateTime
itself represents a leap second
in which case the assumption becomes that there is exactly a single leap second ever.
Returns None
when it will result in overflow.
Example
use chrono::{Duration, NaiveDate}; let from_ymd = NaiveDate::from_ymd; let d = from_ymd(2016, 7, 8); let hms = |h, m, s| d.and_hms(h, m, s); assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::zero()), Some(hms(3, 5, 7))); assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::seconds(1)), Some(hms(3, 5, 6))); assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::seconds(-1)), Some(hms(3, 5, 8))); assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::seconds(3600 + 60)), Some(hms(2, 4, 7))); assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::seconds(86_400)), Some(from_ymd(2016, 7, 7).and_hms(3, 5, 7))); let hmsm = |h, m, s, milli| d.and_hms_milli(h, m, s, milli); assert_eq!(hmsm(3, 5, 7, 450).checked_sub_signed(Duration::milliseconds(670)), Some(hmsm(3, 5, 6, 780)));
Overflow returns None
.
assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::days(1_000_000_000)), None);
Leap seconds are handled, but the subtraction assumes that it is the only leap second happened.
let leap = hmsm(3, 5, 59, 1_300); assert_eq!(leap.checked_sub_signed(Duration::zero()), Some(hmsm(3, 5, 59, 1_300))); assert_eq!(leap.checked_sub_signed(Duration::milliseconds(200)), Some(hmsm(3, 5, 59, 1_100))); assert_eq!(leap.checked_sub_signed(Duration::milliseconds(500)), Some(hmsm(3, 5, 59, 800))); assert_eq!(leap.checked_sub_signed(Duration::seconds(60)), Some(hmsm(3, 5, 0, 300))); assert_eq!(leap.checked_sub_signed(Duration::days(1)), Some(from_ymd(2016, 7, 7).and_hms_milli(3, 6, 0, 300)));
pub fn signed_duration_since(self, rhs: NaiveDateTime) -> OldDuration
[src]
Subtracts another NaiveDateTime
from the current date and time.
This does not overflow or underflow at all.
As a part of Chrono’s leap second handling,
the subtraction assumes that there is no leap second ever,
except when any of the NaiveDateTime
s themselves represents a leap second
in which case the assumption becomes that
there are exactly one (or two) leap second(s) ever.
Example
use chrono::{Duration, NaiveDate}; let from_ymd = NaiveDate::from_ymd; let d = from_ymd(2016, 7, 8); assert_eq!(d.and_hms(3, 5, 7).signed_duration_since(d.and_hms(2, 4, 6)), Duration::seconds(3600 + 60 + 1)); // July 8 is 190th day in the year 2016 let d0 = from_ymd(2016, 1, 1); assert_eq!(d.and_hms_milli(0, 7, 6, 500).signed_duration_since(d0.and_hms(0, 0, 0)), Duration::seconds(189 * 86_400 + 7 * 60 + 6) + Duration::milliseconds(500));
Leap seconds are handled, but the subtraction assumes that there were no other leap seconds happened.
let leap = from_ymd(2015, 6, 30).and_hms_milli(23, 59, 59, 1_500); assert_eq!(leap.signed_duration_since(from_ymd(2015, 6, 30).and_hms(23, 0, 0)), Duration::seconds(3600) + Duration::milliseconds(500)); assert_eq!(from_ymd(2015, 7, 1).and_hms(1, 0, 0).signed_duration_since(leap), Duration::seconds(3600) - Duration::milliseconds(500));
pub fn format_with_items<'a, I, B>(&self, items: I) -> DelayedFormat<I> where
I: Iterator<Item = B> + Clone,
B: Borrow<Item<'a>>,
[src]
I: Iterator<Item = B> + Clone,
B: Borrow<Item<'a>>,
Formats the combined date and time with the specified formatting items.
Otherwise it is the same as the ordinary format
method.
The Iterator
of items should be Clone
able,
since the resulting DelayedFormat
value may be formatted multiple times.
Example
use chrono::NaiveDate; use chrono::format::strftime::StrftimeItems; let fmt = StrftimeItems::new("%Y-%m-%d %H:%M:%S"); let dt = NaiveDate::from_ymd(2015, 9, 5).and_hms(23, 56, 4); assert_eq!(dt.format_with_items(fmt.clone()).to_string(), "2015-09-05 23:56:04"); assert_eq!(dt.format("%Y-%m-%d %H:%M:%S").to_string(), "2015-09-05 23:56:04");
The resulting DelayedFormat
can be formatted directly via the Display
trait.
assert_eq!(format!("{}", dt.format_with_items(fmt)), "2015-09-05 23:56:04");
pub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>>
[src]
Formats the combined date and time with the specified format string.
See the format::strftime
module
on the supported escape sequences.
This returns a DelayedFormat
,
which gets converted to a string only when actual formatting happens.
You may use the to_string
method to get a String
,
or just feed it into print!
and other formatting macros.
(In this way it avoids the redundant memory allocation.)
A wrong format string does not issue an error immediately.
Rather, converting or formatting the DelayedFormat
fails.
You are recommended to immediately use DelayedFormat
for this reason.
Example
use chrono::NaiveDate; let dt = NaiveDate::from_ymd(2015, 9, 5).and_hms(23, 56, 4); assert_eq!(dt.format("%Y-%m-%d %H:%M:%S").to_string(), "2015-09-05 23:56:04"); assert_eq!(dt.format("around %l %p on %b %-d").to_string(), "around 11 PM on Sep 5");
The resulting DelayedFormat
can be formatted directly via the Display
trait.
assert_eq!(format!("{}", dt.format("%Y-%m-%d %H:%M:%S")), "2015-09-05 23:56:04"); assert_eq!(format!("{}", dt.format("around %l %p on %b %-d")), "around 11 PM on Sep 5");
Trait Implementations
impl Add<Duration> for NaiveDateTime
[src]
An addition of Duration
to NaiveDateTime
yields another NaiveDateTime
.
As a part of Chrono’s leap second handling,
the addition assumes that there is no leap second ever,
except when the NaiveDateTime
itself represents a leap second
in which case the assumption becomes that there is exactly a single leap second ever.
Panics on underflow or overflow.
Use NaiveDateTime::checked_add_signed
to detect that.
Example
use chrono::{Duration, NaiveDate}; let from_ymd = NaiveDate::from_ymd; let d = from_ymd(2016, 7, 8); let hms = |h, m, s| d.and_hms(h, m, s); assert_eq!(hms(3, 5, 7) + Duration::zero(), hms(3, 5, 7)); assert_eq!(hms(3, 5, 7) + Duration::seconds(1), hms(3, 5, 8)); assert_eq!(hms(3, 5, 7) + Duration::seconds(-1), hms(3, 5, 6)); assert_eq!(hms(3, 5, 7) + Duration::seconds(3600 + 60), hms(4, 6, 7)); assert_eq!(hms(3, 5, 7) + Duration::seconds(86_400), from_ymd(2016, 7, 9).and_hms(3, 5, 7)); assert_eq!(hms(3, 5, 7) + Duration::days(365), from_ymd(2017, 7, 8).and_hms(3, 5, 7)); let hmsm = |h, m, s, milli| d.and_hms_milli(h, m, s, milli); assert_eq!(hmsm(3, 5, 7, 980) + Duration::milliseconds(450), hmsm(3, 5, 8, 430));
Leap seconds are handled, but the addition assumes that it is the only leap second happened.
let leap = hmsm(3, 5, 59, 1_300); assert_eq!(leap + Duration::zero(), hmsm(3, 5, 59, 1_300)); assert_eq!(leap + Duration::milliseconds(-500), hmsm(3, 5, 59, 800)); assert_eq!(leap + Duration::milliseconds(500), hmsm(3, 5, 59, 1_800)); assert_eq!(leap + Duration::milliseconds(800), hmsm(3, 6, 0, 100)); assert_eq!(leap + Duration::seconds(10), hmsm(3, 6, 9, 300)); assert_eq!(leap + Duration::seconds(-10), hmsm(3, 5, 50, 300)); assert_eq!(leap + Duration::days(1), from_ymd(2016, 7, 9).and_hms_milli(3, 5, 59, 300));
type Output = NaiveDateTime
The resulting type after applying the +
operator.
fn add(self, rhs: OldDuration) -> NaiveDateTime
[src]
impl Add<FixedOffset> for NaiveDateTime
[src]
type Output = NaiveDateTime
The resulting type after applying the +
operator.
fn add(self, rhs: FixedOffset) -> NaiveDateTime
[src]
impl AddAssign<Duration> for NaiveDateTime
[src]
fn add_assign(&mut self, rhs: OldDuration)
[src]
impl Clone for NaiveDateTime
[src]
fn clone(&self) -> NaiveDateTime
[src]
pub fn clone_from(&mut self, source: &Self)
1.0.0[src]
impl Copy for NaiveDateTime
[src]
impl Datelike for NaiveDateTime
[src]
fn year(&self) -> i32
[src]
Returns the year number in the calendar date.
See also the NaiveDate::year
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike}; let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56); assert_eq!(dt.year(), 2015);
fn month(&self) -> u32
[src]
Returns the month number starting from 1.
The return value ranges from 1 to 12.
See also the NaiveDate::month
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike}; let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56); assert_eq!(dt.month(), 9);
fn month0(&self) -> u32
[src]
Returns the month number starting from 0.
The return value ranges from 0 to 11.
See also the NaiveDate::month0
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike}; let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56); assert_eq!(dt.month0(), 8);
fn day(&self) -> u32
[src]
Returns the day of month starting from 1.
The return value ranges from 1 to 31. (The last day of month differs by months.)
See also the NaiveDate::day
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike}; let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56); assert_eq!(dt.day(), 25);
fn day0(&self) -> u32
[src]
Returns the day of month starting from 0.
The return value ranges from 0 to 30. (The last day of month differs by months.)
See also the NaiveDate::day0
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike}; let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56); assert_eq!(dt.day0(), 24);
fn ordinal(&self) -> u32
[src]
Returns the day of year starting from 1.
The return value ranges from 1 to 366. (The last day of year differs by years.)
See also the NaiveDate::ordinal
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike}; let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56); assert_eq!(dt.ordinal(), 268);
fn ordinal0(&self) -> u32
[src]
Returns the day of year starting from 0.
The return value ranges from 0 to 365. (The last day of year differs by years.)
See also the NaiveDate::ordinal0
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike}; let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56); assert_eq!(dt.ordinal0(), 267);
fn weekday(&self) -> Weekday
[src]
Returns the day of week.
See also the NaiveDate::weekday
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike, Weekday}; let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56); assert_eq!(dt.weekday(), Weekday::Fri);
fn iso_week(&self) -> IsoWeek
[src]
fn with_year(&self, year: i32) -> Option<NaiveDateTime>
[src]
Makes a new NaiveDateTime
with the year number changed.
Returns None
when the resulting NaiveDateTime
would be invalid.
See also the
NaiveDate::with_year
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike}; let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56); assert_eq!(dt.with_year(2016), Some(NaiveDate::from_ymd(2016, 9, 25).and_hms(12, 34, 56))); assert_eq!(dt.with_year(-308), Some(NaiveDate::from_ymd(-308, 9, 25).and_hms(12, 34, 56)));
fn with_month(&self, month: u32) -> Option<NaiveDateTime>
[src]
Makes a new NaiveDateTime
with the month number (starting from 1) changed.
Returns None
when the resulting NaiveDateTime
would be invalid.
See also the
NaiveDate::with_month
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike}; let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 30).and_hms(12, 34, 56); assert_eq!(dt.with_month(10), Some(NaiveDate::from_ymd(2015, 10, 30).and_hms(12, 34, 56))); assert_eq!(dt.with_month(13), None); // no month 13 assert_eq!(dt.with_month(2), None); // no February 30
fn with_month0(&self, month0: u32) -> Option<NaiveDateTime>
[src]
Makes a new NaiveDateTime
with the month number (starting from 0) changed.
Returns None
when the resulting NaiveDateTime
would be invalid.
See also the
NaiveDate::with_month0
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike}; let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 30).and_hms(12, 34, 56); assert_eq!(dt.with_month0(9), Some(NaiveDate::from_ymd(2015, 10, 30).and_hms(12, 34, 56))); assert_eq!(dt.with_month0(12), None); // no month 13 assert_eq!(dt.with_month0(1), None); // no February 30
fn with_day(&self, day: u32) -> Option<NaiveDateTime>
[src]
Makes a new NaiveDateTime
with the day of month (starting from 1) changed.
Returns None
when the resulting NaiveDateTime
would be invalid.
See also the
NaiveDate::with_day
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike}; let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms(12, 34, 56); assert_eq!(dt.with_day(30), Some(NaiveDate::from_ymd(2015, 9, 30).and_hms(12, 34, 56))); assert_eq!(dt.with_day(31), None); // no September 31
fn with_day0(&self, day0: u32) -> Option<NaiveDateTime>
[src]
Makes a new NaiveDateTime
with the day of month (starting from 0) changed.
Returns None
when the resulting NaiveDateTime
would be invalid.
See also the
NaiveDate::with_day0
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike}; let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms(12, 34, 56); assert_eq!(dt.with_day0(29), Some(NaiveDate::from_ymd(2015, 9, 30).and_hms(12, 34, 56))); assert_eq!(dt.with_day0(30), None); // no September 31
fn with_ordinal(&self, ordinal: u32) -> Option<NaiveDateTime>
[src]
Makes a new NaiveDateTime
with the day of year (starting from 1) changed.
Returns None
when the resulting NaiveDateTime
would be invalid.
See also the
NaiveDate::with_ordinal
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike}; let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms(12, 34, 56); assert_eq!(dt.with_ordinal(60), Some(NaiveDate::from_ymd(2015, 3, 1).and_hms(12, 34, 56))); assert_eq!(dt.with_ordinal(366), None); // 2015 had only 365 days let dt: NaiveDateTime = NaiveDate::from_ymd(2016, 9, 8).and_hms(12, 34, 56); assert_eq!(dt.with_ordinal(60), Some(NaiveDate::from_ymd(2016, 2, 29).and_hms(12, 34, 56))); assert_eq!(dt.with_ordinal(366), Some(NaiveDate::from_ymd(2016, 12, 31).and_hms(12, 34, 56)));
fn with_ordinal0(&self, ordinal0: u32) -> Option<NaiveDateTime>
[src]
Makes a new NaiveDateTime
with the day of year (starting from 0) changed.
Returns None
when the resulting NaiveDateTime
would be invalid.
See also the
NaiveDate::with_ordinal0
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike}; let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms(12, 34, 56); assert_eq!(dt.with_ordinal0(59), Some(NaiveDate::from_ymd(2015, 3, 1).and_hms(12, 34, 56))); assert_eq!(dt.with_ordinal0(365), None); // 2015 had only 365 days let dt: NaiveDateTime = NaiveDate::from_ymd(2016, 9, 8).and_hms(12, 34, 56); assert_eq!(dt.with_ordinal0(59), Some(NaiveDate::from_ymd(2016, 2, 29).and_hms(12, 34, 56))); assert_eq!(dt.with_ordinal0(365), Some(NaiveDate::from_ymd(2016, 12, 31).and_hms(12, 34, 56)));
fn year_ce(&self) -> (bool, u32)
[src]
fn num_days_from_ce(&self) -> i32
[src]
impl Debug for NaiveDateTime
[src]
The Debug
output of the naive date and time dt
is the same as
dt.format("%Y-%m-%dT%H:%M:%S%.f")
.
The string printed can be readily parsed via the parse
method on str
.
It should be noted that, for leap seconds not on the minute boundary, it may print a representation not distinguishable from non-leap seconds. This doesn’t matter in practice, since such leap seconds never happened. (By the time of the first leap second on 1972-06-30, every time zone offset around the world has standardized to the 5-minute alignment.)
Example
use chrono::NaiveDate; let dt = NaiveDate::from_ymd(2016, 11, 15).and_hms(7, 39, 24); assert_eq!(format!("{:?}", dt), "2016-11-15T07:39:24");
Leap seconds may also be used.
let dt = NaiveDate::from_ymd(2015, 6, 30).and_hms_milli(23, 59, 59, 1_500); assert_eq!(format!("{:?}", dt), "2015-06-30T23:59:60.500");
impl Display for NaiveDateTime
[src]
The Display
output of the naive date and time dt
is the same as
dt.format("%Y-%m-%d %H:%M:%S%.f")
.
It should be noted that, for leap seconds not on the minute boundary, it may print a representation not distinguishable from non-leap seconds. This doesn’t matter in practice, since such leap seconds never happened. (By the time of the first leap second on 1972-06-30, every time zone offset around the world has standardized to the 5-minute alignment.)
Example
use chrono::NaiveDate; let dt = NaiveDate::from_ymd(2016, 11, 15).and_hms(7, 39, 24); assert_eq!(format!("{}", dt), "2016-11-15 07:39:24");
Leap seconds may also be used.
let dt = NaiveDate::from_ymd(2015, 6, 30).and_hms_milli(23, 59, 59, 1_500); assert_eq!(format!("{}", dt), "2015-06-30 23:59:60.500");
impl Eq for NaiveDateTime
[src]
impl FromStr for NaiveDateTime
[src]
Parsing a str
into a NaiveDateTime
uses the same format,
%Y-%m-%dT%H:%M:%S%.f
, as in Debug
.
Example
use chrono::{NaiveDateTime, NaiveDate}; let dt = NaiveDate::from_ymd(2015, 9, 18).and_hms(23, 56, 4); assert_eq!("2015-09-18T23:56:04".parse::<NaiveDateTime>(), Ok(dt)); let dt = NaiveDate::from_ymd(12345, 6, 7).and_hms_milli(7, 59, 59, 1_500); // leap second assert_eq!("+12345-6-7T7:59:60.5".parse::<NaiveDateTime>(), Ok(dt)); assert!("foo".parse::<NaiveDateTime>().is_err());
type Err = ParseError
The associated error which can be returned from parsing.
fn from_str(s: &str) -> ParseResult<NaiveDateTime>
[src]
impl Hash for NaiveDateTime
[src]
NaiveDateTime
can be used as a key to the hash maps (in principle).
Practically this also takes account of fractional seconds, so it is not recommended. (For the obvious reason this also distinguishes leap seconds from non-leap seconds.)
fn hash<H: Hasher>(&self, state: &mut H)
[src]
pub fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher,
1.3.0[src]
H: Hasher,
impl Ord for NaiveDateTime
[src]
fn cmp(&self, other: &NaiveDateTime) -> Ordering
[src]
#[must_use]pub fn max(self, other: Self) -> Self
1.21.0[src]
#[must_use]pub fn min(self, other: Self) -> Self
1.21.0[src]
#[must_use]pub fn clamp(self, min: Self, max: Self) -> Self
1.50.0[src]
impl PartialEq<NaiveDateTime> for NaiveDateTime
[src]
fn eq(&self, other: &NaiveDateTime) -> bool
[src]
fn ne(&self, other: &NaiveDateTime) -> bool
[src]
impl PartialOrd<NaiveDateTime> for NaiveDateTime
[src]
fn partial_cmp(&self, other: &NaiveDateTime) -> Option<Ordering>
[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool
1.0.0[src]
impl StructuralEq for NaiveDateTime
[src]
impl StructuralPartialEq for NaiveDateTime
[src]
impl Sub<Duration> for NaiveDateTime
[src]
A subtraction of Duration
from NaiveDateTime
yields another NaiveDateTime
.
It is the same as the addition with a negated Duration
.
As a part of Chrono’s leap second handling,
the addition assumes that there is no leap second ever,
except when the NaiveDateTime
itself represents a leap second
in which case the assumption becomes that there is exactly a single leap second ever.
Panics on underflow or overflow.
Use NaiveDateTime::checked_sub_signed
to detect that.
Example
use chrono::{Duration, NaiveDate}; let from_ymd = NaiveDate::from_ymd; let d = from_ymd(2016, 7, 8); let hms = |h, m, s| d.and_hms(h, m, s); assert_eq!(hms(3, 5, 7) - Duration::zero(), hms(3, 5, 7)); assert_eq!(hms(3, 5, 7) - Duration::seconds(1), hms(3, 5, 6)); assert_eq!(hms(3, 5, 7) - Duration::seconds(-1), hms(3, 5, 8)); assert_eq!(hms(3, 5, 7) - Duration::seconds(3600 + 60), hms(2, 4, 7)); assert_eq!(hms(3, 5, 7) - Duration::seconds(86_400), from_ymd(2016, 7, 7).and_hms(3, 5, 7)); assert_eq!(hms(3, 5, 7) - Duration::days(365), from_ymd(2015, 7, 9).and_hms(3, 5, 7)); let hmsm = |h, m, s, milli| d.and_hms_milli(h, m, s, milli); assert_eq!(hmsm(3, 5, 7, 450) - Duration::milliseconds(670), hmsm(3, 5, 6, 780));
Leap seconds are handled, but the subtraction assumes that it is the only leap second happened.
let leap = hmsm(3, 5, 59, 1_300); assert_eq!(leap - Duration::zero(), hmsm(3, 5, 59, 1_300)); assert_eq!(leap - Duration::milliseconds(200), hmsm(3, 5, 59, 1_100)); assert_eq!(leap - Duration::milliseconds(500), hmsm(3, 5, 59, 800)); assert_eq!(leap - Duration::seconds(60), hmsm(3, 5, 0, 300)); assert_eq!(leap - Duration::days(1), from_ymd(2016, 7, 7).and_hms_milli(3, 6, 0, 300));
type Output = NaiveDateTime
The resulting type after applying the -
operator.
fn sub(self, rhs: OldDuration) -> NaiveDateTime
[src]
impl Sub<FixedOffset> for NaiveDateTime
[src]
type Output = NaiveDateTime
The resulting type after applying the -
operator.
fn sub(self, rhs: FixedOffset) -> NaiveDateTime
[src]
impl Sub<NaiveDateTime> for NaiveDateTime
[src]
Subtracts another NaiveDateTime
from the current date and time.
This does not overflow or underflow at all.
As a part of Chrono’s leap second handling,
the subtraction assumes that there is no leap second ever,
except when any of the NaiveDateTime
s themselves represents a leap second
in which case the assumption becomes that
there are exactly one (or two) leap second(s) ever.
The implementation is a wrapper around
NaiveDateTime::signed_duration_since
.
Example
use chrono::{Duration, NaiveDate}; let from_ymd = NaiveDate::from_ymd; let d = from_ymd(2016, 7, 8); assert_eq!(d.and_hms(3, 5, 7) - d.and_hms(2, 4, 6), Duration::seconds(3600 + 60 + 1)); // July 8 is 190th day in the year 2016 let d0 = from_ymd(2016, 1, 1); assert_eq!(d.and_hms_milli(0, 7, 6, 500) - d0.and_hms(0, 0, 0), Duration::seconds(189 * 86_400 + 7 * 60 + 6) + Duration::milliseconds(500));
Leap seconds are handled, but the subtraction assumes that there were no other leap seconds happened.
let leap = from_ymd(2015, 6, 30).and_hms_milli(23, 59, 59, 1_500); assert_eq!(leap - from_ymd(2015, 6, 30).and_hms(23, 0, 0), Duration::seconds(3600) + Duration::milliseconds(500)); assert_eq!(from_ymd(2015, 7, 1).and_hms(1, 0, 0) - leap, Duration::seconds(3600) - Duration::milliseconds(500));
type Output = OldDuration
The resulting type after applying the -
operator.
fn sub(self, rhs: NaiveDateTime) -> OldDuration
[src]
impl SubAssign<Duration> for NaiveDateTime
[src]
fn sub_assign(&mut self, rhs: OldDuration)
[src]
impl Timelike for NaiveDateTime
[src]
fn hour(&self) -> u32
[src]
Returns the hour number from 0 to 23.
See also the NaiveTime::hour
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Timelike}; let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789); assert_eq!(dt.hour(), 12);
fn minute(&self) -> u32
[src]
Returns the minute number from 0 to 59.
See also the NaiveTime::minute
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Timelike}; let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789); assert_eq!(dt.minute(), 34);
fn second(&self) -> u32
[src]
Returns the second number from 0 to 59.
See also the NaiveTime::second
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Timelike}; let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789); assert_eq!(dt.second(), 56);
fn nanosecond(&self) -> u32
[src]
Returns the number of nanoseconds since the whole non-leap second. The range from 1,000,000,000 to 1,999,999,999 represents the leap second.
See also the
NaiveTime::nanosecond
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Timelike}; let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789); assert_eq!(dt.nanosecond(), 789_000_000);
fn with_hour(&self, hour: u32) -> Option<NaiveDateTime>
[src]
Makes a new NaiveDateTime
with the hour number changed.
Returns None
when the resulting NaiveDateTime
would be invalid.
See also the
NaiveTime::with_hour
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Timelike}; let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789); assert_eq!(dt.with_hour(7), Some(NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(7, 34, 56, 789))); assert_eq!(dt.with_hour(24), None);
fn with_minute(&self, min: u32) -> Option<NaiveDateTime>
[src]
Makes a new NaiveDateTime
with the minute number changed.
Returns None
when the resulting NaiveDateTime
would be invalid.
See also the
NaiveTime::with_minute
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Timelike}; let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789); assert_eq!(dt.with_minute(45), Some(NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 45, 56, 789))); assert_eq!(dt.with_minute(60), None);
fn with_second(&self, sec: u32) -> Option<NaiveDateTime>
[src]
Makes a new NaiveDateTime
with the second number changed.
Returns None
when the resulting NaiveDateTime
would be invalid.
As with the second
method,
the input range is restricted to 0 through 59.
See also the
NaiveTime::with_second
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Timelike}; let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789); assert_eq!(dt.with_second(17), Some(NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 17, 789))); assert_eq!(dt.with_second(60), None);
fn with_nanosecond(&self, nano: u32) -> Option<NaiveDateTime>
[src]
Makes a new NaiveDateTime
with nanoseconds since the whole non-leap second changed.
Returns None
when the resulting NaiveDateTime
would be invalid.
As with the nanosecond
method,
the input range can exceed 1,000,000,000 for leap seconds.
See also the
NaiveTime::with_nanosecond
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Timelike}; let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789); assert_eq!(dt.with_nanosecond(333_333_333), Some(NaiveDate::from_ymd(2015, 9, 8).and_hms_nano(12, 34, 56, 333_333_333))); assert_eq!(dt.with_nanosecond(1_333_333_333), // leap second Some(NaiveDate::from_ymd(2015, 9, 8).and_hms_nano(12, 34, 56, 1_333_333_333))); assert_eq!(dt.with_nanosecond(2_000_000_000), None);
fn hour12(&self) -> (bool, u32)
[src]
fn num_seconds_from_midnight(&self) -> u32
[src]
Auto Trait Implementations
impl RefUnwindSafe for NaiveDateTime
impl Send for NaiveDateTime
impl Sync for NaiveDateTime
impl Unpin for NaiveDateTime
impl UnwindSafe for NaiveDateTime
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
pub fn to_owned(&self) -> T
[src]
pub fn clone_into(&self, target: &mut T)
[src]
impl<T> ToString for T where
T: Display + ?Sized,
[src]
T: Display + ?Sized,
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,