Struct nalgebra::linalg::Bidiagonal [−][src]
The bidiagonalization of a general matrix.
Implementations
impl<N: ComplexField, R: DimMin<C>, C: Dim> Bidiagonal<N, R, C> where
DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> + Allocator<N, C> + Allocator<N, R> + Allocator<N, DimMinimum<R, C>> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>>,
[src]
DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> + Allocator<N, C> + Allocator<N, R> + Allocator<N, DimMinimum<R, C>> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>>,
pub fn new(matrix: MatrixMN<N, R, C>) -> Self
[src]
Computes the Bidiagonal decomposition using householder reflections.
pub fn is_upper_diagonal(&self) -> bool
[src]
Indicates whether this decomposition contains an upper-diagonal matrix.
pub fn unpack(
self
) -> (MatrixMN<N, R, DimMinimum<R, C>>, MatrixN<N, DimMinimum<R, C>>, MatrixMN<N, DimMinimum<R, C>, C>) where
DefaultAllocator: Allocator<N, DimMinimum<R, C>, DimMinimum<R, C>> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N, DimMinimum<R, C>, C>,
[src]
self
) -> (MatrixMN<N, R, DimMinimum<R, C>>, MatrixN<N, DimMinimum<R, C>>, MatrixMN<N, DimMinimum<R, C>, C>) where
DefaultAllocator: Allocator<N, DimMinimum<R, C>, DimMinimum<R, C>> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N, DimMinimum<R, C>, C>,
Unpacks this decomposition into its three matrix factors (U, D, V^t)
.
The decomposed matrix M
is equal to U * D * V^t
.
pub fn d(&self) -> MatrixN<N, DimMinimum<R, C>> where
DefaultAllocator: Allocator<N, DimMinimum<R, C>, DimMinimum<R, C>>,
[src]
DefaultAllocator: Allocator<N, DimMinimum<R, C>, DimMinimum<R, C>>,
Retrieves the upper trapezoidal submatrix R
of this decomposition.
pub fn u(&self) -> MatrixMN<N, R, DimMinimum<R, C>> where
DefaultAllocator: Allocator<N, R, DimMinimum<R, C>>,
[src]
DefaultAllocator: Allocator<N, R, DimMinimum<R, C>>,
Computes the orthogonal matrix U
of this U * D * V
decomposition.
pub fn v_t(&self) -> MatrixMN<N, DimMinimum<R, C>, C> where
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C>,
[src]
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C>,
Computes the orthogonal matrix V_t
of this U * D * V_t
decomposition.
pub fn diagonal(&self) -> VectorN<N::RealField, DimMinimum<R, C>> where
DefaultAllocator: Allocator<N::RealField, DimMinimum<R, C>>,
[src]
DefaultAllocator: Allocator<N::RealField, DimMinimum<R, C>>,
The diagonal part of this decomposed matrix.
pub fn off_diagonal(
&self
) -> VectorN<N::RealField, DimDiff<DimMinimum<R, C>, U1>> where
DefaultAllocator: Allocator<N::RealField, DimDiff<DimMinimum<R, C>, U1>>,
[src]
&self
) -> VectorN<N::RealField, DimDiff<DimMinimum<R, C>, U1>> where
DefaultAllocator: Allocator<N::RealField, DimDiff<DimMinimum<R, C>, U1>>,
The off-diagonal part of this decomposed matrix.
Trait Implementations
impl<N: Clone + ComplexField, R: Clone + DimMin<C>, C: Clone + Dim> Clone for Bidiagonal<N, R, C> where
DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>>,
[src]
DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>>,
fn clone(&self) -> Bidiagonal<N, R, C>
[src]
pub fn clone_from(&mut self, source: &Self)
1.0.0[src]
impl<N: ComplexField, R: DimMin<C>, C: Dim> Copy for Bidiagonal<N, R, C> where
DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>>,
MatrixMN<N, R, C>: Copy,
VectorN<N, DimMinimum<R, C>>: Copy,
VectorN<N, DimDiff<DimMinimum<R, C>, U1>>: Copy,
[src]
DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>>,
MatrixMN<N, R, C>: Copy,
VectorN<N, DimMinimum<R, C>>: Copy,
VectorN<N, DimDiff<DimMinimum<R, C>, U1>>: Copy,
impl<N: Debug + ComplexField, R: Debug + DimMin<C>, C: Debug + Dim> Debug for Bidiagonal<N, R, C> where
DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>>,
[src]
DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>>,
Auto Trait Implementations
impl<N, R, C> !RefUnwindSafe for Bidiagonal<N, R, C>
impl<N, R, C> !Send for Bidiagonal<N, R, C>
impl<N, R, C> !Sync for Bidiagonal<N, R, C>
impl<N, R, C> !Unpin for Bidiagonal<N, R, C>
impl<N, R, C> !UnwindSafe for Bidiagonal<N, R, C>
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> Same<T> for T
[src]
type Output = T
Should always be Self
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
[src]
SS: SubsetOf<SP>,
pub fn to_subset(&self) -> Option<SS>
[src]
pub fn is_in_subset(&self) -> bool
[src]
pub unsafe fn to_subset_unchecked(&self) -> SS
[src]
pub fn from_subset(element: &SS) -> SP
[src]
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
pub fn to_owned(&self) -> T
[src]
pub fn clone_into(&self, target: &mut T)
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,