Struct nalgebra::linalg::SVD [−][src]
Singular Value Decomposition of a general matrix.
Fields
u: Option<MatrixMN<N, R, DimMinimum<R, C>>>
The left-singular vectors U
of this SVD.
v_t: Option<MatrixMN<N, DimMinimum<R, C>, C>>
The right-singular vectors V^t
of this SVD.
singular_values: VectorN<N::RealField, DimMinimum<R, C>>
The singular values of this SVD.
Implementations
impl<N: ComplexField, R: DimMin<C>, C: Dim> SVD<N, R, C> where
DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> + Allocator<N, C> + Allocator<N, R> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>> + Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N, DimMinimum<R, C>> + Allocator<N::RealField, DimMinimum<R, C>> + Allocator<N::RealField, DimDiff<DimMinimum<R, C>, U1>>,
[src]
DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> + Allocator<N, C> + Allocator<N, R> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>> + Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N, DimMinimum<R, C>> + Allocator<N::RealField, DimMinimum<R, C>> + Allocator<N::RealField, DimDiff<DimMinimum<R, C>, U1>>,
pub fn new(matrix: MatrixMN<N, R, C>, compute_u: bool, compute_v: bool) -> Self
[src]
Computes the Singular Value Decomposition of matrix
using implicit shift.
pub fn try_new(
matrix: MatrixMN<N, R, C>,
compute_u: bool,
compute_v: bool,
eps: N::RealField,
max_niter: usize
) -> Option<Self>
[src]
matrix: MatrixMN<N, R, C>,
compute_u: bool,
compute_v: bool,
eps: N::RealField,
max_niter: usize
) -> Option<Self>
Attempts to compute the Singular Value Decomposition of matrix
using implicit shift.
Arguments
compute_u
− set this totrue
to enable the computation of left-singular vectors.compute_v
− set this totrue
to enable the computation of left-singular vectors.eps
− tolerance used to determine when a value converged to 0.max_niter
− maximum total number of iterations performed by the algorithm. If this number of iteration is exceeded,None
is returned. Ifniter == 0
, then the algorithm continues indefinitely until convergence.
pub fn rank(&self, eps: N::RealField) -> usize
[src]
Computes the rank of the decomposed matrix, i.e., the number of singular values greater
than eps
.
pub fn recompose(self) -> Result<MatrixMN<N, R, C>, &'static str>
[src]
Rebuild the original matrix.
This is useful if some of the singular values have been manually modified.
Returns Err
if the right- and left- singular vectors have not been
computed at construction-time.
pub fn pseudo_inverse(
self,
eps: N::RealField
) -> Result<MatrixMN<N, C, R>, &'static str> where
DefaultAllocator: Allocator<N, C, R>,
[src]
self,
eps: N::RealField
) -> Result<MatrixMN<N, C, R>, &'static str> where
DefaultAllocator: Allocator<N, C, R>,
Computes the pseudo-inverse of the decomposed matrix.
Any singular value smaller than eps
is assumed to be zero.
Returns Err
if the right- and left- singular vectors have not
been computed at construction-time.
pub fn solve<R2: Dim, C2: Dim, S2>(
&self,
b: &Matrix<N, R2, C2, S2>,
eps: N::RealField
) -> Result<MatrixMN<N, C, C2>, &'static str> where
S2: Storage<N, R2, C2>,
DefaultAllocator: Allocator<N, C, C2> + Allocator<N, DimMinimum<R, C>, C2>,
ShapeConstraint: SameNumberOfRows<R, R2>,
[src]
&self,
b: &Matrix<N, R2, C2, S2>,
eps: N::RealField
) -> Result<MatrixMN<N, C, C2>, &'static str> where
S2: Storage<N, R2, C2>,
DefaultAllocator: Allocator<N, C, C2> + Allocator<N, DimMinimum<R, C>, C2>,
ShapeConstraint: SameNumberOfRows<R, R2>,
Solves the system self * x = b
where self
is the decomposed matrix and x
the unknown.
Any singular value smaller than eps
is assumed to be zero.
Returns Err
if the singular vectors U
and V
have not been computed.
Trait Implementations
impl<N: Clone + ComplexField, R: Clone + DimMin<C>, C: Clone + Dim> Clone for SVD<N, R, C> where
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N::RealField, DimMinimum<R, C>>,
N::RealField: Clone,
[src]
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N::RealField, DimMinimum<R, C>>,
N::RealField: Clone,
impl<N: ComplexField, R: DimMin<C>, C: Dim> Copy for SVD<N, R, C> where
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N::RealField, DimMinimum<R, C>>,
MatrixMN<N, R, DimMinimum<R, C>>: Copy,
MatrixMN<N, DimMinimum<R, C>, C>: Copy,
VectorN<N::RealField, DimMinimum<R, C>>: Copy,
[src]
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N::RealField, DimMinimum<R, C>>,
MatrixMN<N, R, DimMinimum<R, C>>: Copy,
MatrixMN<N, DimMinimum<R, C>, C>: Copy,
VectorN<N::RealField, DimMinimum<R, C>>: Copy,
impl<N: Debug + ComplexField, R: Debug + DimMin<C>, C: Debug + Dim> Debug for SVD<N, R, C> where
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N::RealField, DimMinimum<R, C>>,
N::RealField: Debug,
[src]
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N::RealField, DimMinimum<R, C>>,
N::RealField: Debug,
Auto Trait Implementations
impl<N, R, C> !RefUnwindSafe for SVD<N, R, C>
impl<N, R, C> !Send for SVD<N, R, C>
impl<N, R, C> !Sync for SVD<N, R, C>
impl<N, R, C> !Unpin for SVD<N, R, C>
impl<N, R, C> !UnwindSafe for SVD<N, R, C>
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> Same<T> for T
[src]
type Output = T
Should always be Self
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
[src]
SS: SubsetOf<SP>,
pub fn to_subset(&self) -> Option<SS>
[src]
pub fn is_in_subset(&self) -> bool
[src]
pub unsafe fn to_subset_unchecked(&self) -> SS
[src]
pub fn from_subset(element: &SS) -> SP
[src]
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
pub fn to_owned(&self) -> T
[src]
pub fn clone_into(&self, target: &mut T)
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,