Struct nalgebra::linalg::Schur [−][src]
Schur decomposition of a square matrix.
If this is a real matrix, this will be a RealField Schur decomposition.
Implementations
impl<N: ComplexField, D: Dim> Schur<N, D> where
D: DimSub<U1>,
DefaultAllocator: Allocator<N, D, DimDiff<D, U1>> + Allocator<N, DimDiff<D, U1>> + Allocator<N, D, D> + Allocator<N, D>,
[src]
D: DimSub<U1>,
DefaultAllocator: Allocator<N, D, DimDiff<D, U1>> + Allocator<N, DimDiff<D, U1>> + Allocator<N, D, D> + Allocator<N, D>,
pub fn new(m: MatrixN<N, D>) -> Self
[src]
Computes the Schur decomposition of a square matrix.
pub fn try_new(
m: MatrixN<N, D>,
eps: N::RealField,
max_niter: usize
) -> Option<Self>
[src]
m: MatrixN<N, D>,
eps: N::RealField,
max_niter: usize
) -> Option<Self>
Attempts to compute the Schur decomposition of a square matrix.
If only eigenvalues are needed, it is more efficient to call the matrix method
.eigenvalues()
instead.
Arguments
eps
− tolerance used to determine when a value converged to 0.max_niter
− maximum total number of iterations performed by the algorithm. If this number of iteration is exceeded,None
is returned. Ifniter == 0
, then the algorithm continues indefinitely until convergence.
pub fn unpack(self) -> (MatrixN<N, D>, MatrixN<N, D>)
[src]
Retrieves the unitary matrix Q
and the upper-quasitriangular matrix T
such that the
decomposed matrix equals Q * T * Q.transpose()
.
pub fn eigenvalues(&self) -> Option<VectorN<N, D>>
[src]
Computes the real eigenvalues of the decomposed matrix.
Return None
if some eigenvalues are complex.
pub fn complex_eigenvalues(&self) -> VectorN<NumComplex<N>, D> where
N: RealField,
DefaultAllocator: Allocator<NumComplex<N>, D>,
[src]
N: RealField,
DefaultAllocator: Allocator<NumComplex<N>, D>,
Computes the complex eigenvalues of the decomposed matrix.
Trait Implementations
impl<N: Clone + ComplexField, D: Clone + Dim> Clone for Schur<N, D> where
DefaultAllocator: Allocator<N, D, D>,
[src]
DefaultAllocator: Allocator<N, D, D>,
impl<N: ComplexField, D: Dim> Copy for Schur<N, D> where
DefaultAllocator: Allocator<N, D, D>,
MatrixN<N, D>: Copy,
[src]
DefaultAllocator: Allocator<N, D, D>,
MatrixN<N, D>: Copy,
impl<N: Debug + ComplexField, D: Debug + Dim> Debug for Schur<N, D> where
DefaultAllocator: Allocator<N, D, D>,
[src]
DefaultAllocator: Allocator<N, D, D>,
Auto Trait Implementations
impl<N, D> !RefUnwindSafe for Schur<N, D>
impl<N, D> !Send for Schur<N, D>
impl<N, D> !Sync for Schur<N, D>
impl<N, D> !Unpin for Schur<N, D>
impl<N, D> !UnwindSafe for Schur<N, D>
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> Same<T> for T
[src]
type Output = T
Should always be Self
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
[src]
SS: SubsetOf<SP>,
pub fn to_subset(&self) -> Option<SS>
[src]
pub fn is_in_subset(&self) -> bool
[src]
pub unsafe fn to_subset_unchecked(&self) -> SS
[src]
pub fn from_subset(element: &SS) -> SP
[src]
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
pub fn to_owned(&self) -> T
[src]
pub fn clone_into(&self, target: &mut T)
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,