Struct schnorrkel::keys::Keypair[][src]

pub struct Keypair {
    pub secret: SecretKey,
    pub public: PublicKey,
}

A Ristretto Schnorr keypair.

Fields

secret: SecretKey

The secret half of this keypair.

public: PublicKey

The public half of this keypair.

Implementations

impl Keypair[src]

pub fn to_bytes(&self) -> [u8; 96][src]

Serialize Keypair to bytes.

Returns

A byte array [u8; KEYPAIR_LENGTH] consisting of first a SecretKey serialized cannonically, and next the Ristterro PublicKey

Examples

use schnorrkel::{Keypair, KEYPAIR_LENGTH};

let keypair: Keypair = Keypair::generate();
let bytes: [u8; KEYPAIR_LENGTH] = keypair.to_bytes();
let keypair_too = Keypair::from_bytes(&bytes[..]).unwrap();
assert_eq!(&bytes[..], & keypair_too.to_bytes()[..]);

pub fn from_bytes(bytes: &[u8]) -> SignatureResult<Keypair>[src]

Deserialize a Keypair from bytes.

Inputs

  • bytes: an &[u8] consisting of byte representations of first a SecretKey and then the corresponding ristretto PublicKey.

Examples

use schnorrkel::{Keypair, KEYPAIR_LENGTH};
use hex_literal::hex;

// TODO: Fix test vector
// let keypair_bytes = hex!("28b0ae221c6bb06856b287f60d7ea0d98552ea5a16db16956849aa371db3eb51fd190cce74df356432b410bd64682309d6dedb27c76845daf388557cbac3ca3446ebddef8cd9bb167dc30878d7113b7e168e6f0646beffd77d69d39bad76b47a");
// let keypair: Keypair = Keypair::from_bytes(&keypair_bytes[..]).unwrap();
// assert_eq!(&keypair_bytes[..], & keypair.to_bytes()[..]);

Returns

A Result whose okay value is an EdDSA Keypair or whose error value is an SignatureError describing the error that occurred.

pub fn to_half_ed25519_bytes(&self) -> [u8; 96][src]

Serialize Keypair to bytes with Ed25519 secret key format.

Returns

A byte array [u8; KEYPAIR_LENGTH] consisting of first a SecretKey serialized like Ed25519, and next the Ristterro PublicKey

pub fn from_half_ed25519_bytes(bytes: &[u8]) -> SignatureResult<Keypair>[src]

Deserialize a Keypair from bytes with Ed25519 style SecretKey format.

Inputs

  • bytes: an &[u8] representing the scalar for the secret key, and a compressed Ristretto point, both as bytes.

Examples

use schnorrkel::{Keypair, KEYPAIR_LENGTH};
use hex_literal::hex;

let keypair_bytes = hex!("28b0ae221c6bb06856b287f60d7ea0d98552ea5a16db16956849aa371db3eb51fd190cce74df356432b410bd64682309d6dedb27c76845daf388557cbac3ca3446ebddef8cd9bb167dc30878d7113b7e168e6f0646beffd77d69d39bad76b47a");
let keypair: Keypair = Keypair::from_half_ed25519_bytes(&keypair_bytes[..]).unwrap();
assert_eq!(&keypair_bytes[..], & keypair.to_half_ed25519_bytes()[..]);

Returns

A Result whose okay value is an EdDSA Keypair or whose error value is an SignatureError describing the error that occurred.

pub fn generate_with<R>(csprng: R) -> Keypair where
    R: CryptoRng + RngCore
[src]

Generate a Ristretto Schnorr Keypair directly, bypassing the MiniSecretKey layer.

Example


use rand::{Rng, rngs::OsRng};
use schnorrkel::Keypair;
use schnorrkel::Signature;

let keypair: Keypair = Keypair::generate_with(OsRng);

Input

A CSPRNG with a fill_bytes() method, e.g. rand_chacha::ChaChaRng.

We generate a SecretKey directly bypassing MiniSecretKey, so our secret keys do not satisfy the high bit “clamping” impoised on Ed25519 keys.

pub fn generate() -> Keypair[src]

Generate a Ristretto Schnorr Keypair directly, from a user suplied csprng, bypassing the MiniSecretKey layer.

impl Keypair[src]

pub fn sign<T: SigningTranscript>(&self, t: T) -> Signature[src]

Sign a transcript with this keypair’s secret key.

Requires a SigningTranscript, normally created from a SigningContext and a message. Returns a Schnorr signature.

Examples

Internally, we manage signature transcripts using a 128 bit secure STROBE construction based on Keccak, which itself is extremly fast and secure. You might however influence performance or security by prehashing your message, like

use schnorrkel::{Signature,Keypair};
use rand::prelude::*; // ThreadRng,thread_rng
use sha3::Shake128;
use sha3::digest::{Input};

let mut csprng: ThreadRng = thread_rng();
let keypair: Keypair = Keypair::generate_with(&mut csprng);
let message: &[u8] = b"All I want is to pet all of the dogs.";

// Create a hash digest object and feed it the message:
let prehashed = Shake128::default().chain(message);

We require a “context” string for all signatures, which should be chosen judiciously for your project. It should represent the role the signature plays in your application. If you use the context in two purposes, and the same key, then a signature for one purpose can be substituted for the other.

let ctx = signing_context(b"My Signing Context");

let sig: Signature = keypair.sign(ctx.xof(prehashed));

pub fn sign_simple(&self, ctx: &[u8], msg: &[u8]) -> Signature[src]

Sign a message with this keypair’s secret key.

pub fn verify<T: SigningTranscript>(
    &self,
    t: T,
    signature: &Signature
) -> SignatureResult<()>
[src]

Verify a signature by keypair’s public key on a transcript.

Requires a SigningTranscript, normally created from a SigningContext and a message, as well as the signature to be verified.

Examples

use schnorrkel::{Keypair,Signature,signing_context};
use rand::prelude::*; // ThreadRng,thread_rng

let mut csprng: ThreadRng = thread_rng();
let keypair: Keypair = Keypair::generate_with(&mut csprng);
let message: &[u8] = b"All I want is to pet all of the dogs.";

let ctx = signing_context(b"Some context string");

let sig: Signature = keypair.sign(ctx.bytes(message));

assert!( keypair.public.verify(ctx.bytes(message), &sig).is_ok() );

pub fn verify_simple(
    &self,
    ctx: &[u8],
    msg: &[u8],
    signature: &Signature
) -> SignatureResult<()>
[src]

Verify a signature by keypair’s public key on a message.

pub fn sign_doublecheck<T>(&self, t: T) -> SignatureResult<Signature> where
    T: SigningTranscript + Clone
[src]

Sign a message with this SecretKey, but doublecheck the result.

pub fn sign_simple_doublecheck(
    &self,
    ctx: &[u8],
    msg: &[u8]
) -> SignatureResult<Signature>
[src]

Sign a message with this SecretKey, but doublecheck the result.

impl Keypair[src]

pub fn vrf_create_hash<T: VRFSigningTranscript>(&self, t: T) -> VRFInOut[src]

Evaluate the VRF on the given transcript.

impl Keypair[src]

pub fn dleq_proove<T>(
    &self,
    t: T,
    p: &VRFInOut,
    kusama: bool
) -> (VRFProof, VRFProofBatchable) where
    T: SigningTranscript
[src]

Produce DLEQ proof.

We assume the VRFInOut paramater has been computed correctly by multiplying every input point by self.secret, like by using one of the vrf_create_* methods on SecretKey. If so, we produce a proof that this multiplication was done correctly.

pub fn vrf_sign<T>(&self, t: T) -> (VRFInOut, VRFProof, VRFProofBatchable) where
    T: VRFSigningTranscript
[src]

Run VRF on one single input transcript, producing the outpus and correspodning short proof.

There are schemes like Ouroboros Praos in which nodes evaluate VRFs repeatedly until they win some contest. In these case, you should probably use vrf_sign_n_check to gain access to the VRFInOut from vrf_create_hash first, and then avoid computing the proof whenever you do not win.

pub fn vrf_sign_extra<T, E>(
    &self,
    t: T,
    extra: E
) -> (VRFInOut, VRFProof, VRFProofBatchable) where
    T: VRFSigningTranscript,
    E: SigningTranscript
[src]

Run VRF on one single input transcript and an extra message transcript, producing the outpus and correspodning short proof.

pub fn vrf_sign_after_check<T, F>(
    &self,
    t: T,
    check: F
) -> Option<(VRFInOut, VRFProof, VRFProofBatchable)> where
    T: VRFSigningTranscript,
    F: FnMut(&VRFInOut) -> bool
[src]

Run VRF on one single input transcript, producing the outpus and correspodning short proof only if the result first passes some check.

There are schemes like Ouroboros Praos in which nodes evaluate VRFs repeatedly until they win some contest. In these case, you might use this function to short circuit computing the full proof.

pub fn vrf_sign_extra_after_check<T, E, F>(
    &self,
    t: T,
    check: F
) -> Option<(VRFInOut, VRFProof, VRFProofBatchable)> where
    T: VRFSigningTranscript,
    E: SigningTranscript,
    F: FnMut(&VRFInOut) -> Option<E>, 
[src]

Run VRF on one single input transcript, producing the outpus and correspodning short proof only if the result first passes some check, which itself returns an extra message transcript.

pub fn vrfs_sign<T, I>(
    &self,
    ts: I
) -> (Box<[VRFInOut]>, VRFProof, VRFProofBatchable) where
    T: VRFSigningTranscript,
    I: IntoIterator<Item = T>, 
[src]

Run VRF on several input transcripts, producing their outputs and a common short proof.

We merge the VRF outputs using variable time arithmetic, so if even the hash of the message being signed is sensitive then you might reimplement some constant time variant.

pub fn vrfs_sign_extra<T, E, I>(
    &self,
    ts: I,
    extra: E
) -> (Box<[VRFInOut]>, VRFProof, VRFProofBatchable) where
    T: VRFSigningTranscript,
    E: SigningTranscript,
    I: IntoIterator<Item = T>, 
[src]

Run VRF on several input transcripts and an extra message transcript, producing their outputs and a common short proof.

We merge the VRF outputs using variable time arithmetic, so if even the hash of the message being signed is sensitive then you might reimplement some constant time variant.

impl Keypair[src]

pub fn hard_derive_mini_secret_key<B: AsRef<[u8]>>(
    &self,
    cc: Option<ChainCode>,
    i: B
) -> (MiniSecretKey, ChainCode)
[src]

Vaguely BIP32-like “hard” derivation of a MiniSecretKey from a SecretKey

We do not envision any “good reasons” why these “hard” derivations should ever be used after the soft Derivation trait. We similarly do not believe hard derivations make any sense for ChainCodes or ExtendedKeys types. Yet, some existing BIP32 workflows might do these things, due to BIP32’s de facto stnadardization and poor design. In consequence, we provide this method to do “hard” derivations in a way that should work with all BIP32 workflows and any permissible mutations of SecretKey. This means only that we hash the SecretKey’s scalar, but not its nonce becuase the secret key remains valid if the nonce is changed.

pub fn derive_secret_key<T>(
    &self,
    t: T,
    cc: ChainCode
) -> (SecretKey, ChainCode) where
    T: SigningTranscript
[src]

Derive a secret key and new chain code from a key pair and chain code.

We expect the trait methods of Keypair as Derivation to be more useful since signing anything requires the public key too.

impl Keypair[src]

pub fn issue_ecqv_cert<T>(
    &self,
    t: T,
    seed_public_key: &PublicKey
) -> ECQVCertSecret where
    T: SigningTranscript
[src]

Issue an ECQV implicit certificate

Aside from the issuing Keypair supplied as self, you provide both (1) a SigningTranscript called t that incorporates both the context and the certificate requester’s identity, and (2) the seed_public_key supplied by the certificate recipient in their certificate request. We return an ECQVCertSecret which the issuer sent to the certificate requester, ans from which the certificate requester derives their certified key pair.

impl Keypair[src]

pub fn issue_self_ecqv_cert<T>(&self, t: T) -> (ECQVCertPublic, SecretKey) where
    T: SigningTranscript + Clone
[src]

Issue an ECQV Implicit Certificate for yourself

We can issue an implicit certificate to ourselves if we merely want to certify an associated public key. We should prefer this option over “hierarchical deterministic” key derivation because compromizing the resulting secret key does not compromize the issuer’s secret key.

In this case, we avoid the entire interactive protocol described by issue_ecqv_cert and accept_ecqv_cert by hiding it an all managment of the ephemeral Keypair inside this function.

Aside from the issuing secret key supplied as self, you provide only a digest h that incorporates any context and metadata pertaining to the issued key.

impl Keypair[src]

pub fn musig<'k, T>(&'k self, t: T) -> MuSig<T, CommitStage<&'k Keypair>> where
    T: SigningTranscript + Clone
[src]

Initialize a multi-signature aka cosignature protocol run.

We borrow the keypair here to discurage keeping too many copies of the private key, but the MuSig::new method can create an owned version, or use Rc or Arc.

Trait Implementations

impl Clone for Keypair[src]

impl Debug for Keypair[src]

impl Derivation for Keypair[src]

impl Drop for Keypair[src]

impl From<SecretKey> for Keypair[src]

impl Zeroize for Keypair[src]

Auto Trait Implementations

impl RefUnwindSafe for Keypair

impl Send for Keypair

impl Sync for Keypair

impl Unpin for Keypair

impl UnwindSafe for Keypair

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> Same<T> for T[src]

type Output = T

Should always be Self

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<V, T> VZip<V> for T where
    V: MultiLane<T>, 
[src]