Struct linregress::FormulaRegressionBuilder[][src]

pub struct FormulaRegressionBuilder<'a> { /* fields omitted */ }

A builder to create and fit a linear regression model.

Given a dataset and a regression formula this builder will produce an ordinary least squared linear regression model.

See formula and data for details on how to configure this builder.

The pseudo inverse method is used to fit the model.

Usage

use linregress::{FormulaRegressionBuilder, RegressionDataBuilder};

let y = vec![1., 2. ,3., 4.];
let x = vec![4., 3., 2., 1.];
let data = vec![("Y", y), ("X", x)];
let data = RegressionDataBuilder::new().build_from(data)?;
let model = FormulaRegressionBuilder::new().data(&data).formula("Y ~ X").fit()?;
assert_eq!(model.parameters.intercept_value, 4.999999999999998);
assert_eq!(model.parameters.regressor_values[0], -0.9999999999999989);
assert_eq!(model.parameters.regressor_names[0], "X");

Implementations

impl<'a> FormulaRegressionBuilder<'a>[src]

pub fn new() -> Self[src]

Create as new FormulaRegressionBuilder with no data or formula set.

pub fn data(self, data: &'a RegressionData<'a>) -> Self[src]

Set the data to be used for the regression.

The data has to be given as a reference to a RegressionData struct. See RegressionDataBuilder for details.

pub fn formula<T: Into<Cow<'a, str>>>(self, formula: T) -> Self[src]

Set the formula to use for the regression.

The expected format is <regressand> ~ <regressor 1> + <regressor 2>.

E.g. for a regressand named Y and three regressors named A, B and C the correct format would be Y ~ A + B + C.

Note that there is currently no special support for categorical variables. So if you have a categorical variable with more than two distinct values or values that are not 0 and 1 you will need to perform “dummy coding” yourself.

pub fn fit(self) -> Result<RegressionModel, Error>[src]

Fits the model and returns a RegressionModel if successful. You need to set the data with data and a formula with formula before you can use it.

pub fn fit_without_statistics(self) -> Result<RegressionParameters, Error>[src]

Like fit but does not perfom any statistics on the resulting model. Returns a RegressionParameters struct containing the model parameters if successfull.

This is usefull if you do not care about the statistics or the model and data you want to fit result in too few residual degrees of freedom to perform statistics.

Trait Implementations

impl<'a> Clone for FormulaRegressionBuilder<'a>[src]

impl<'a> Debug for FormulaRegressionBuilder<'a>[src]

impl<'a> Default for FormulaRegressionBuilder<'a>[src]

Auto Trait Implementations

impl<'a> RefUnwindSafe for FormulaRegressionBuilder<'a>

impl<'a> Send for FormulaRegressionBuilder<'a>

impl<'a> Sync for FormulaRegressionBuilder<'a>

impl<'a> Unpin for FormulaRegressionBuilder<'a>

impl<'a> UnwindSafe for FormulaRegressionBuilder<'a>

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> Same<T> for T[src]

type Output = T

Should always be Self

impl<SS, SP> SupersetOf<SS> for SP where
    SS: SubsetOf<SP>, 
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.