Struct linregress::FormulaRegressionBuilder [−][src]
A builder to create and fit a linear regression model.
Given a dataset and a regression formula this builder will produce an ordinary least squared linear regression model.
See formula
and data
for details on how to configure this builder.
The pseudo inverse method is used to fit the model.
Usage
use linregress::{FormulaRegressionBuilder, RegressionDataBuilder}; let y = vec![1., 2. ,3., 4.]; let x = vec![4., 3., 2., 1.]; let data = vec![("Y", y), ("X", x)]; let data = RegressionDataBuilder::new().build_from(data)?; let model = FormulaRegressionBuilder::new().data(&data).formula("Y ~ X").fit()?; assert_eq!(model.parameters.intercept_value, 4.999999999999998); assert_eq!(model.parameters.regressor_values[0], -0.9999999999999989); assert_eq!(model.parameters.regressor_names[0], "X");
Implementations
impl<'a> FormulaRegressionBuilder<'a>
[src]
pub fn new() -> Self
[src]
Create as new FormulaRegressionBuilder with no data or formula set.
pub fn data(self, data: &'a RegressionData<'a>) -> Self
[src]
Set the data to be used for the regression.
The data has to be given as a reference to a RegressionData
struct.
See RegressionDataBuilder
for details.
pub fn formula<T: Into<Cow<'a, str>>>(self, formula: T) -> Self
[src]
Set the formula to use for the regression.
The expected format is <regressand> ~ <regressor 1> + <regressor 2>
.
E.g. for a regressand named Y and three regressors named A, B and C
the correct format would be Y ~ A + B + C
.
Note that there is currently no special support for categorical variables.
So if you have a categorical variable with more than two distinct values
or values that are not 0
and 1
you will need to perform “dummy coding” yourself.
pub fn fit(self) -> Result<RegressionModel, Error>
[src]
Fits the model and returns a RegressionModel
if successful.
You need to set the data with data
and a formula with formula
before you can use it.
pub fn fit_without_statistics(self) -> Result<RegressionParameters, Error>
[src]
Like fit
but does not perfom any statistics on the resulting model.
Returns a RegressionParameters
struct containing the model parameters
if successfull.
This is usefull if you do not care about the statistics or the model and data you want to fit result in too few residual degrees of freedom to perform statistics.
Trait Implementations
impl<'a> Clone for FormulaRegressionBuilder<'a>
[src]
fn clone(&self) -> FormulaRegressionBuilder<'a>
[src]
pub fn clone_from(&mut self, source: &Self)
1.0.0[src]
impl<'a> Debug for FormulaRegressionBuilder<'a>
[src]
impl<'a> Default for FormulaRegressionBuilder<'a>
[src]
Auto Trait Implementations
impl<'a> RefUnwindSafe for FormulaRegressionBuilder<'a>
impl<'a> Send for FormulaRegressionBuilder<'a>
impl<'a> Sync for FormulaRegressionBuilder<'a>
impl<'a> Unpin for FormulaRegressionBuilder<'a>
impl<'a> UnwindSafe for FormulaRegressionBuilder<'a>
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> Same<T> for T
[src]
type Output = T
Should always be Self
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
[src]
SS: SubsetOf<SP>,
pub fn to_subset(&self) -> Option<SS>
[src]
pub fn is_in_subset(&self) -> bool
[src]
pub unsafe fn to_subset_unchecked(&self) -> SS
[src]
pub fn from_subset(element: &SS) -> SP
[src]
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
pub fn to_owned(&self) -> T
[src]
pub fn clone_into(&self, target: &mut T)
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,