Trait nalgebra::base::Norm[][src]

pub trait Norm<N: ComplexField> {
    fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::RealField
    where
        R: Dim,
        C: Dim,
        S: Storage<N, R, C>
;
fn metric_distance<R1, C1, S1, R2, C2, S2>(
        &self,
        m1: &Matrix<N, R1, C1, S1>,
        m2: &Matrix<N, R2, C2, S2>
    ) -> N::RealField
    where
        R1: Dim,
        C1: Dim,
        S1: Storage<N, R1, C1>,
        R2: Dim,
        C2: Dim,
        S2: Storage<N, R2, C2>,
        ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>
; }

A trait for abstract matrix norms.

This may be moved to the alga crate in the future.

Required methods

fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::RealField where
    R: Dim,
    C: Dim,
    S: Storage<N, R, C>, 
[src]

Apply this norm to the given matrix.

fn metric_distance<R1, C1, S1, R2, C2, S2>(
    &self,
    m1: &Matrix<N, R1, C1, S1>,
    m2: &Matrix<N, R2, C2, S2>
) -> N::RealField where
    R1: Dim,
    C1: Dim,
    S1: Storage<N, R1, C1>,
    R2: Dim,
    C2: Dim,
    S2: Storage<N, R2, C2>,
    ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>, 
[src]

Use the metric induced by this norm to compute the metric distance between the two given matrices.

Loading content...

Implementors

impl<N: ComplexField> Norm<N> for EuclideanNorm[src]

impl<N: ComplexField> Norm<N> for LpNorm[src]

impl<N: ComplexField> Norm<N> for UniformNorm[src]

Loading content...