Trait statrs::statistics::Entropy [−][src]
The Entropy trait specifies an object that has a closed form solution
for its entropy
Required methods
fn entropy(&self) -> T[src]
Returns the entropy. May panic depending on the implementor.
Examples
use statrs::statistics::Entropy; use statrs::distribution::Uniform; let n = Uniform::new(0.0, 1.0).unwrap(); assert_eq!(0.0, n.entropy());
Implementors
impl Entropy<f64> for Bernoulli[src]
impl Entropy<f64> for Beta[src]
fn entropy(&self) -> f64[src]
Returns the entropy of the beta distribution
Formula
ln(B(α, β)) - (α - 1)ψ(α) - (β - 1)ψ(β) + (α + β - 2)ψ(α + β)
where α is shapeA, β is shapeB and ψ is the digamma function
impl Entropy<f64> for Binomial[src]
fn entropy(&self) -> f64[src]
Returns the entropy of the binomial distribution
Formula
(1 / 2) * ln (2 * π * e * n * p * (1 - p))
impl Entropy<f64> for Categorical[src]
fn entropy(&self) -> f64[src]
Returns the entropy of the categorical distribution
Formula
-Σ(p_j * ln(p_j))
where p_j is the jth probability mass,
Σ is the sum from 0 to k - 1,
and k is the number of categories
impl Entropy<f64> for Cauchy[src]
impl Entropy<f64> for Chi[src]
impl Entropy<f64> for ChiSquared[src]
fn entropy(&self) -> f64[src]
Returns the entropy of the chi-squared distribution
Formula
(k / 2) + ln(2 * Γ(k / 2)) + (1 - (k / 2)) * ψ(k / 2)
where k is the degrees of freedom, Γ is the gamma function,
and ψ is the digamma function
impl Entropy<f64> for Dirichlet[src]
fn entropy(&self) -> f64[src]
Returns the entropy of the dirichlet distribution
Formula
ln(B(α)) - (K - α_0)ψ(α_0) - Σ((α_i - 1)ψ(α_i))
where
B(α) = Π(Γ(α_i)) / Γ(Σ(α_i))
α_0 is the sum of all concentration parameters,
K is the number of concentration parameters, ψ is the digamma
function, α_i
is the ith concentration parameter, and Σ is the sum from 1 to K
impl Entropy<f64> for DiscreteUniform[src]
impl Entropy<f64> for Erlang[src]
fn entropy(&self) -> f64[src]
Returns the entropy of the erlang distribution
Formula
k - ln(λ) + ln(Γ(k)) + (1 - k) * ψ(k)
where k is the shape, λ is the rate, Γ is the gamma function,
and ψ is the digamma function
impl Entropy<f64> for Exponential[src]
impl Entropy<f64> for Gamma[src]
fn entropy(&self) -> f64[src]
Returns the entropy of the gamma distribution
Formula
α - ln(β) + ln(Γ(α)) + (1 - α) * ψ(α)
where α is the shape, β is the rate, Γ is the gamma function,
and ψ is the digamma function
impl Entropy<f64> for Geometric[src]
fn entropy(&self) -> f64[src]
Returns the entropy of the geometric distribution
Formula
(-(1 - p) * log_2(1 - p) - p * log_2(p)) / p
impl Entropy<f64> for InverseGamma[src]
fn entropy(&self) -> f64[src]
Returns the entropy of the inverse gamma distribution
Formula
α + ln(β * Γ(α)) - (1 + α) * ψ(α)
where α is the shape, β is the rate, Γ is the gamma function,
and ψ is the digamma function
impl Entropy<f64> for LogNormal[src]
fn entropy(&self) -> f64[src]
Returns the entropy of the log-normal distribution
Formula
ln(σe^(μ + 1 / 2) * sqrt(2π))
where μ is the location and σ is the scale
impl Entropy<f64> for Normal[src]
fn entropy(&self) -> f64[src]
Returns the entropy of the normal distribution
Formula
(1 / 2) * ln(2σ^2 * π * e)
where σ is the standard deviation
impl Entropy<f64> for Pareto[src]
fn entropy(&self) -> f64[src]
Returns the entropy for the Pareto distribution
Formula
ln(α/x_m) - 1/α - 1
where x_m is the scale and α is the shape
impl Entropy<f64> for Poisson[src]
fn entropy(&self) -> f64[src]
Returns the entropy of the poisson distribution
Formula
(1 / 2) * ln(2πeλ) - 1 / (12λ) - 1 / (24λ^2) - 19 / (360λ^3)
where λ is the rate