Struct statrs::distribution::Bernoulli [−][src]
Implements the
Bernoulli
distribution which is a special case of the
Binomial
distribution where n = 1 (referenced Here)
Examples
use statrs::distribution::{Bernoulli, Discrete}; use statrs::statistics::Mean; let n = Bernoulli::new(0.5).unwrap(); assert_eq!(n.mean(), 0.5); assert_eq!(n.pmf(0), 0.5); assert_eq!(n.pmf(1), 0.5);
Implementations
impl Bernoulli[src]
pub fn new(p: f64) -> Result<Bernoulli>[src]
Constructs a new bernoulli distribution with
the given p probability of success.
Errors
Returns an error if p is NaN, less than 0.0
or greater than 1.0
Examples
use statrs::distribution::Bernoulli; let mut result = Bernoulli::new(0.5); assert!(result.is_ok()); result = Bernoulli::new(-0.5); assert!(result.is_err());
pub fn p(&self) -> f64[src]
Returns the probability of success p of the
bernoulli distribution.
Examples
use statrs::distribution::Bernoulli; let n = Bernoulli::new(0.5).unwrap(); assert_eq!(n.p(), 0.5);
pub fn n(&self) -> u64[src]
Returns the number of trials n of the
bernoulli distribution. Will always be 1.0.
Examples
use statrs::distribution::Bernoulli; let n = Bernoulli::new(0.5).unwrap(); assert_eq!(n.n(), 1);
Trait Implementations
impl Clone for Bernoulli[src]
impl Copy for Bernoulli[src]
impl Debug for Bernoulli[src]
impl Discrete<u64, f64> for Bernoulli[src]
fn pmf(&self, x: u64) -> f64[src]
Calculates the probability mass function for the
bernoulli distribution at x.
Formula
if x == 0 { 1 - p } else { p }
fn ln_pmf(&self, x: u64) -> f64[src]
Calculates the log probability mass function for the
bernoulli distribution at x.
Formula
else if x == 0 { ln(1 - p) } else { ln(p) }
impl Distribution<f64> for Bernoulli[src]
fn sample<R: Rng + ?Sized>(&self, r: &mut R) -> f64[src]
pub fn sample_iter<R>(&'a self, rng: &'a mut R) -> DistIter<'a, Self, R, T> where
R: Rng, [src]
R: Rng,
impl Entropy<f64> for Bernoulli[src]
impl Max<u64> for Bernoulli[src]
fn max(&self) -> u64[src]
Returns the maximum value in the domain of the bernoulli distribution representable by a 64- bit integer
Formula
1impl Mean<f64> for Bernoulli[src]
impl Median<f64> for Bernoulli[src]
fn median(&self) -> f64[src]
Returns the median of the bernoulli distribution
Formula
if p < 0.5 { 0 } else if p > 0.5 { 1 } else { 0.5 }
impl Min<u64> for Bernoulli[src]
fn min(&self) -> u64[src]
Returns the minimum value in the domain of the bernoulli distribution representable by a 64- bit integer
Formula
0impl Mode<u64> for Bernoulli[src]
impl PartialEq<Bernoulli> for Bernoulli[src]
impl Skewness<f64> for Bernoulli[src]
impl StructuralPartialEq for Bernoulli[src]
impl Univariate<u64, f64> for Bernoulli[src]
fn cdf(&self, x: f64) -> f64[src]
Calculates the cumulative distribution
function for the bernoulli distribution at x.
Formula
if x < 0 { 0 } else if x >= 1 { 1 } else { 1 - p }
impl Variance<f64> for Bernoulli[src]
Auto Trait Implementations
impl RefUnwindSafe for Bernoulli
impl Send for Bernoulli
impl Sync for Bernoulli
impl Unpin for Bernoulli
impl UnwindSafe for Bernoulli
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized, [src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized, [src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized, [src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T[src]
impl<T> From<T> for T[src]
impl<T, U> Into<U> for T where
U: From<T>, [src]
U: From<T>,
impl<T> ToOwned for T where
T: Clone, [src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
pub fn to_owned(&self) -> T[src]
pub fn clone_into(&self, target: &mut T)[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>, [src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>, [src]
U: TryFrom<T>,