Trait statrs::statistics::Mean [−][src]
The Mean trait specifies that an object has a closed form
solution for its mean(s)
Required methods
fn mean(&self) -> T[src]
Returns the mean. May panic depending on the implementor.
Examples
use statrs::statistics::Mean; use statrs::distribution::Uniform; let n = Uniform::new(0.0, 1.0).unwrap(); assert_eq!(0.5, n.mean());
Implementations on Foreign Types
impl Mean<f64> for [f64][src]
fn mean(&self) -> f64[src]
Evaluates the sample mean, an estimate of the population mean.
Remarks
Returns f64::NAN if data is empty or an entry is f64::NAN
Examples
#[macro_use] extern crate statrs; use std::f64; use statrs::statistics::Mean; let x = []; assert!(x.mean().is_nan()); let y = [0.0, f64::NAN, 3.0, -2.0]; assert!(y.mean().is_nan()); let z = [0.0, 3.0, -2.0]; assert_almost_eq!(z.mean(), 1.0 / 3.0, 1e-15);
Implementors
impl Mean<f64> for Bernoulli[src]
impl Mean<f64> for Beta[src]
impl Mean<f64> for Binomial[src]
impl Mean<f64> for Categorical[src]
fn mean(&self) -> f64[src]
Returns the mean of the categorical distribution
Formula
Σ(j * p_j)
where p_j is the jth probability mass,
Σ is the sum from 0 to k - 1,
and k is the number of categories
impl Mean<f64> for Chi[src]
impl Mean<f64> for ChiSquared[src]
impl Mean<f64> for DiscreteUniform[src]
impl Mean<f64> for Erlang[src]
impl Mean<f64> for Exponential[src]
impl Mean<f64> for FisherSnedecor[src]
impl Mean<f64> for Gamma[src]
impl Mean<f64> for Geometric[src]
impl Mean<f64> for Hypergeometric[src]
impl Mean<f64> for InverseGamma[src]
impl Mean<f64> for LogNormal[src]
fn mean(&self) -> f64[src]
Returns the mean of the log-normal distribution
Formula
e^(μ + σ^2 / 2)
where μ is the location and σ is the scale
impl Mean<f64> for Normal[src]
fn mean(&self) -> f64[src]
Returns the mean of the normal distribution
Remarks
This is the same mean used to construct the distribution
impl Mean<f64> for Pareto[src]
fn mean(&self) -> f64[src]
Returns the mean of the Pareto distribution
Formula
if α <= 1 { INF } else { (α * x_m)/(α - 1) }
where x_m is the scale and α is the shape
impl Mean<f64> for Poisson[src]
impl Mean<f64> for StudentsT[src]
impl Mean<f64> for Triangular[src]
impl Mean<f64> for Uniform[src]
impl Mean<f64> for Weibull[src]
fn mean(&self) -> f64[src]
Returns the mean of the weibull distribution
Formula
λΓ(1 + 1 / k)
where k is the shape, λ is the scale, and Γ is
the gamma function
impl Mean<Vec<f64, Global>> for Dirichlet[src]
fn mean(&self) -> Vec<f64>[src]
Returns the means of the dirichlet distribution
Formula
α_i / α_0
for the ith element where α_i is the ith concentration parameter
and α_0 is the sum of all concentration parameters