Trait statrs::statistics::Mode [−][src]
The Mode trait specififies that an object has a closed form solution
for its mode(s)
Required methods
fn mode(&self) -> T[src]
Returns the mode. May panic depending on the implementor.
Examples
use statrs::statistics::Mode; use statrs::distribution::Uniform; let n = Uniform::new(0.0, 1.0).unwrap(); assert_eq!(0.5, n.mode());
Implementors
impl Mode<f64> for Beta[src]
impl Mode<f64> for Cauchy[src]
impl Mode<f64> for Chi[src]
impl Mode<f64> for ChiSquared[src]
impl Mode<f64> for Erlang[src]
impl Mode<f64> for Exponential[src]
impl Mode<f64> for FisherSnedecor[src]
impl Mode<f64> for Gamma[src]
impl Mode<f64> for InverseGamma[src]
fn mode(&self) -> f64[src]
Returns the mode of the inverse gamma distribution
Formula
ⓘ
β / (α + 1)
/// where α is the shape and β is the rate
impl Mode<f64> for LogNormal[src]
fn mode(&self) -> f64[src]
Returns the mode of the log-normal distribution
Formula
ⓘ
e^(μ - σ^2)
where μ is the location and σ is the scale
impl Mode<f64> for Normal[src]
impl Mode<f64> for Pareto[src]
impl Mode<f64> for StudentsT[src]
impl Mode<f64> for Triangular[src]
impl Mode<f64> for Uniform[src]
impl Mode<f64> for Weibull[src]
fn mode(&self) -> f64[src]
Returns the median of the weibull distribution
Formula
ⓘ
if k == 1 { 0 } else { λ((k - 1) / k)^(1 / k) }
where k is the shape and λ is the scale
impl Mode<i64> for DiscreteUniform[src]
impl Mode<u64> for Bernoulli[src]
impl Mode<u64> for Binomial[src]
impl Mode<u64> for Geometric[src]
impl Mode<u64> for Hypergeometric[src]
fn mode(&self) -> u64[src]
Returns the mode of the hypergeometric distribution
Formula
ⓘ
floor((n + 1) * (k + 1) / (N + 2))
where N is population, K is successes, and n is draws