Trait alga::general::AbstractRingCommutative[][src]

pub trait AbstractRingCommutative<A: Operator = Additive, M: Operator = Multiplicative>: AbstractRing<A, M> {
    fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool
    where
        Self: RelativeEq
, { ... }
fn prop_mul_is_commutative(args: (Self, Self)) -> bool
    where
        Self: Eq
, { ... } }

A ring with a commutative multiplication.

A commutative ring is a set with two binary operations: a closed commutative and associative with the divisibility property and an identity element, and another closed associative and commutative with the divisibility property and an identity element.

Commutativity

∀ a, b ∈ Self, a × b = b × a

Provided methods

fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if the multiplication operator is commutative for the given argument tuple. Approximate equality is used for verifications.

fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if the multiplication operator is commutative for the given argument tuple.

Loading content...

Implementations on Foreign Types

impl AbstractRingCommutative<Additive, Multiplicative> for i8[src]

impl AbstractRingCommutative<Additive, Multiplicative> for i16[src]

impl AbstractRingCommutative<Additive, Multiplicative> for i32[src]

impl AbstractRingCommutative<Additive, Multiplicative> for i64[src]

impl AbstractRingCommutative<Additive, Multiplicative> for i128[src]

impl AbstractRingCommutative<Additive, Multiplicative> for isize[src]

impl AbstractRingCommutative<Additive, Multiplicative> for f32[src]

impl AbstractRingCommutative<Additive, Multiplicative> for f64[src]

impl<N: Num + Clone + ClosedNeg + AbstractRingCommutative> AbstractRingCommutative<Additive, Multiplicative> for Complex<N>[src]

Loading content...

Implementors

Loading content...