Struct alga::general::Multiplicative [−][src]
The multiplication operator, commonly symbolized by ×
.
Trait Implementations
impl AbstractField<Additive, Multiplicative> for f32
[src]
impl AbstractField<Additive, Multiplicative> for f64
[src]
impl<N: Num + Clone + ClosedNeg + AbstractField> AbstractField<Additive, Multiplicative> for Complex<N>
[src]
impl<N> AbstractGroup<Multiplicative> for Complex<N> where
N: Num + Clone + ClosedNeg,
[src]
N: Num + Clone + ClosedNeg,
impl AbstractGroup<Multiplicative> for f32
[src]
impl AbstractGroup<Multiplicative> for f64
[src]
impl<N> AbstractGroupAbelian<Multiplicative> for Complex<N> where
N: Num + Clone + ClosedNeg,
[src]
N: Num + Clone + ClosedNeg,
fn prop_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_is_commutative(args: (Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractGroupAbelian<Multiplicative> for f32
[src]
fn prop_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_is_commutative(args: (Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractGroupAbelian<Multiplicative> for f64
[src]
fn prop_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_is_commutative(args: (Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl<N> AbstractLoop<Multiplicative> for Complex<N> where
N: Num + Clone + ClosedNeg,
[src]
N: Num + Clone + ClosedNeg,
impl AbstractLoop<Multiplicative> for f32
[src]
impl AbstractLoop<Multiplicative> for f64
[src]
impl AbstractMagma<Multiplicative> for u8
[src]
impl AbstractMagma<Multiplicative> for u16
[src]
impl AbstractMagma<Multiplicative> for i128
[src]
impl AbstractMagma<Multiplicative> for isize
[src]
impl AbstractMagma<Multiplicative> for f32
[src]
impl AbstractMagma<Multiplicative> for f64
[src]
impl<N: Num + Clone> AbstractMagma<Multiplicative> for Complex<N>
[src]
impl AbstractMagma<Multiplicative> for u32
[src]
impl AbstractMagma<Multiplicative> for u64
[src]
impl AbstractMagma<Multiplicative> for u128
[src]
impl AbstractMagma<Multiplicative> for usize
[src]
impl AbstractMagma<Multiplicative> for i8
[src]
impl AbstractMagma<Multiplicative> for i16
[src]
impl AbstractMagma<Multiplicative> for i32
[src]
impl AbstractMagma<Multiplicative> for i64
[src]
impl<N: AbstractRingCommutative<Additive, Multiplicative> + Num + ClosedNeg> AbstractModule<Additive, Additive, Multiplicative> for Complex<N>
[src]
impl AbstractModule<Additive, Additive, Multiplicative> for i8
[src]
impl AbstractModule<Additive, Additive, Multiplicative> for i16
[src]
impl AbstractModule<Additive, Additive, Multiplicative> for i32
[src]
impl AbstractModule<Additive, Additive, Multiplicative> for i64
[src]
impl AbstractModule<Additive, Additive, Multiplicative> for isize
[src]
impl AbstractModule<Additive, Additive, Multiplicative> for f32
[src]
impl AbstractModule<Additive, Additive, Multiplicative> for f64
[src]
impl AbstractMonoid<Multiplicative> for u8
[src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractMonoid<Multiplicative> for u16
[src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractMonoid<Multiplicative> for i64
[src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractMonoid<Multiplicative> for i128
[src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractMonoid<Multiplicative> for isize
[src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractMonoid<Multiplicative> for f32
[src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractMonoid<Multiplicative> for f64
[src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractMonoid<Multiplicative> for u32
[src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractMonoid<Multiplicative> for u64
[src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractMonoid<Multiplicative> for u128
[src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractMonoid<Multiplicative> for usize
[src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl<N> AbstractMonoid<Multiplicative> for Complex<N> where
N: Num + Clone + ClosedNeg,
[src]
N: Num + Clone + ClosedNeg,
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractMonoid<Multiplicative> for i8
[src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractMonoid<Multiplicative> for i16
[src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractMonoid<Multiplicative> for i32
[src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl<N> AbstractQuasigroup<Multiplicative> for Complex<N> where
N: Num + Clone + ClosedNeg,
[src]
N: Num + Clone + ClosedNeg,
fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractQuasigroup<Multiplicative> for f32
[src]
fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractQuasigroup<Multiplicative> for f64
[src]
fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractRing<Additive, Multiplicative> for i8
[src]
fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractRing<Additive, Multiplicative> for i16
[src]
fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractRing<Additive, Multiplicative> for i32
[src]
fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractRing<Additive, Multiplicative> for i64
[src]
fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractRing<Additive, Multiplicative> for i128
[src]
fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractRing<Additive, Multiplicative> for isize
[src]
fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractRing<Additive, Multiplicative> for f32
[src]
fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractRing<Additive, Multiplicative> for f64
[src]
fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl<N: Num + Clone + ClosedNeg + AbstractRing> AbstractRing<Additive, Multiplicative> for Complex<N>
[src]
fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractRingCommutative<Additive, Multiplicative> for i8
[src]
fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractRingCommutative<Additive, Multiplicative> for i16
[src]
fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractRingCommutative<Additive, Multiplicative> for i32
[src]
fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractRingCommutative<Additive, Multiplicative> for i64
[src]
fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractRingCommutative<Additive, Multiplicative> for i128
[src]
fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractRingCommutative<Additive, Multiplicative> for isize
[src]
fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractRingCommutative<Additive, Multiplicative> for f32
[src]
fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractRingCommutative<Additive, Multiplicative> for f64
[src]
fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl<N: Num + Clone + ClosedNeg + AbstractRingCommutative> AbstractRingCommutative<Additive, Multiplicative> for Complex<N>
[src]
fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractSemigroup<Multiplicative> for u8
[src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractSemigroup<Multiplicative> for u16
[src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractSemigroup<Multiplicative> for i64
[src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractSemigroup<Multiplicative> for i128
[src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractSemigroup<Multiplicative> for isize
[src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractSemigroup<Multiplicative> for f32
[src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractSemigroup<Multiplicative> for f64
[src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractSemigroup<Multiplicative> for u32
[src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractSemigroup<Multiplicative> for u64
[src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractSemigroup<Multiplicative> for u128
[src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractSemigroup<Multiplicative> for usize
[src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl<N> AbstractSemigroup<Multiplicative> for Complex<N> where
N: Num + Clone + ClosedNeg,
[src]
N: Num + Clone + ClosedNeg,
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractSemigroup<Multiplicative> for i8
[src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractSemigroup<Multiplicative> for i16
[src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl AbstractSemigroup<Multiplicative> for i32
[src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl Clone for Multiplicative
[src]
fn clone(&self) -> Multiplicative
[src]
pub fn clone_from(&mut self, source: &Self)
1.0.0[src]
impl Copy for Multiplicative
[src]
impl Identity<Multiplicative> for u8
[src]
impl Identity<Multiplicative> for u16
[src]
impl Identity<Multiplicative> for i128
[src]
impl Identity<Multiplicative> for isize
[src]
impl Identity<Multiplicative> for f32
[src]
impl Identity<Multiplicative> for f64
[src]
impl<N: Num + Clone> Identity<Multiplicative> for Complex<N>
[src]
impl Identity<Multiplicative> for u32
[src]
impl Identity<Multiplicative> for u64
[src]
impl Identity<Multiplicative> for u128
[src]
impl Identity<Multiplicative> for usize
[src]
impl Identity<Multiplicative> for i8
[src]
impl Identity<Multiplicative> for i16
[src]
impl Identity<Multiplicative> for i32
[src]
impl Identity<Multiplicative> for i64
[src]
impl Operator for Multiplicative
[src]
fn operator_token() -> Self
[src]
impl TwoSidedInverse<Multiplicative> for f32
[src]
fn two_sided_inverse(&self) -> f32
[src]
fn two_sided_inverse_mut(&mut self)
[src]
impl TwoSidedInverse<Multiplicative> for f64
[src]
fn two_sided_inverse(&self) -> f64
[src]
fn two_sided_inverse_mut(&mut self)
[src]
impl<N: Num + Clone + ClosedNeg> TwoSidedInverse<Multiplicative> for Complex<N>
[src]
fn two_sided_inverse(&self) -> Self
[src]
fn two_sided_inverse_mut(&mut self)
[src]
Auto Trait Implementations
impl RefUnwindSafe for Multiplicative
impl Send for Multiplicative
impl Sync for Multiplicative
impl Unpin for Multiplicative
impl UnwindSafe for Multiplicative
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
pub fn to_owned(&self) -> T
[src]
pub fn clone_into(&self, target: &mut T)
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,