Trait alga::general::AbstractGroupAbelian[][src]

pub trait AbstractGroupAbelian<O: Operator>: AbstractGroup<O> {
    fn prop_is_commutative_approx(args: (Self, Self)) -> bool
    where
        Self: RelativeEq
, { ... }
fn prop_is_commutative(args: (Self, Self)) -> bool
    where
        Self: Eq
, { ... } }

An Abelian group is a commutative group.

An commutative group is a set with a closed commutative and associative binary operation with the divisibility property and an identity element.

Commutativity

∀ a, b ∈ Self, a ∘ b = b ∘ a

Provided methods

fn prop_is_commutative_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if the operator is commutative for the given argument tuple. Approximate equality is used for verifications.

fn prop_is_commutative(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if the operator is commutative for the given argument tuple.

Loading content...

Implementations on Foreign Types

impl<N> AbstractGroupAbelian<Multiplicative> for Complex<N> where
    N: Num + Clone + ClosedNeg
[src]

impl<N> AbstractGroupAbelian<Additive> for Complex<N> where
    N: AbstractGroupAbelian<Additive>, 
[src]

impl AbstractGroupAbelian<Additive> for i8[src]

impl AbstractGroupAbelian<Additive> for i16[src]

impl AbstractGroupAbelian<Additive> for i32[src]

impl AbstractGroupAbelian<Additive> for i64[src]

impl AbstractGroupAbelian<Additive> for i128[src]

impl AbstractGroupAbelian<Additive> for isize[src]

impl AbstractGroupAbelian<Additive> for f32[src]

impl AbstractGroupAbelian<Additive> for f64[src]

impl AbstractGroupAbelian<Multiplicative> for f32[src]

impl AbstractGroupAbelian<Multiplicative> for f64[src]

Loading content...

Implementors

impl<O: Operator> AbstractGroupAbelian<O> for Id<O>[src]

Loading content...