Trait alga::general::AbstractMonoid [−][src]
A monoid is a semigroup equipped with an identity element, e.
A set equipped with a closed associative binary operation with the divisibility property and an identity element.
Identity element
∃ e ∈ Self, ∀ a ∈ Self, e ∘ a = a ∘ e = a
Provided methods
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq,
[src]
Self: RelativeEq,
Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications.
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq,
[src]
Self: Eq,
Checks whether operating with the identity element is a no-op for the given argument.
Implementations on Foreign Types
impl AbstractMonoid<Additive> for u8
[src]
impl AbstractMonoid<Additive> for u16
[src]
impl AbstractMonoid<Additive> for u32
[src]
impl AbstractMonoid<Additive> for u64
[src]
impl AbstractMonoid<Additive> for u128
[src]
impl AbstractMonoid<Additive> for usize
[src]
impl AbstractMonoid<Multiplicative> for u8
[src]
impl AbstractMonoid<Multiplicative> for u16
[src]
impl AbstractMonoid<Multiplicative> for u32
[src]
impl AbstractMonoid<Multiplicative> for u64
[src]
impl AbstractMonoid<Multiplicative> for u128
[src]
impl AbstractMonoid<Multiplicative> for usize
[src]
impl<N> AbstractMonoid<Multiplicative> for Complex<N> where
N: Num + Clone + ClosedNeg,
[src]
N: Num + Clone + ClosedNeg,
impl<N> AbstractMonoid<Additive> for Complex<N> where
N: AbstractGroupAbelian<Additive>,
[src]
N: AbstractGroupAbelian<Additive>,