Struct nalgebra::geometry::Quaternion[][src]

#[repr(C)]pub struct Quaternion<N: RealField> {
    pub coords: Vector4<N>,
}

A quaternion. See the type alias UnitQuaternion = Unit<Quaternion> for a quaternion that may be used as a rotation.

Fields

coords: Vector4<N>

This quaternion as a 4D vector of coordinates in the [ x, y, z, w ] storage order.

Implementations

impl<N: RealField> Quaternion<N>[src]

pub fn into_owned(self) -> Self[src]

👎 Deprecated:

This method is a no-op and will be removed in a future release.

Moves this unit quaternion into one that owns its data.

pub fn clone_owned(&self) -> Self[src]

👎 Deprecated:

This method is a no-op and will be removed in a future release.

Clones this unit quaternion into one that owns its data.

pub fn normalize(&self) -> Self[src]

Normalizes this quaternion.

Example

let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let q_normalized = q.normalize();
relative_eq!(q_normalized.norm(), 1.0);

pub fn imag(&self) -> Vector3<N>[src]

The imaginary part of this quaternion.

pub fn conjugate(&self) -> Self[src]

The conjugate of this quaternion.

Example

let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let conj = q.conjugate();
assert!(conj.i == -2.0 && conj.j == -3.0 && conj.k == -4.0 && conj.w == 1.0);

pub fn try_inverse(&self) -> Option<Self>[src]

Inverts this quaternion if it is not zero.

Example

let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let inv_q = q.try_inverse();

assert!(inv_q.is_some());
assert_relative_eq!(inv_q.unwrap() * q, Quaternion::identity());

//Non-invertible case
let q = Quaternion::new(0.0, 0.0, 0.0, 0.0);
let inv_q = q.try_inverse();

assert!(inv_q.is_none());

pub fn lerp(&self, other: &Self, t: N) -> Self[src]

Linear interpolation between two quaternion.

Computes self * (1 - t) + other * t.

Example

let q1 = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let q2 = Quaternion::new(10.0, 20.0, 30.0, 40.0);

assert_eq!(q1.lerp(&q2, 0.1), Quaternion::new(1.9, 3.8, 5.7, 7.6));

pub fn vector(
    &self
) -> MatrixSlice<'_, N, U3, U1, RStride<N, U4, U1>, CStride<N, U4, U1>>
[src]

The vector part (i, j, k) of this quaternion.

Example

let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
assert_eq!(q.vector()[0], 2.0);
assert_eq!(q.vector()[1], 3.0);
assert_eq!(q.vector()[2], 4.0);

pub fn scalar(&self) -> N[src]

The scalar part w of this quaternion.

Example

let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
assert_eq!(q.scalar(), 1.0);

pub fn as_vector(&self) -> &Vector4<N>[src]

Reinterprets this quaternion as a 4D vector.

Example

let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
// Recall that the quaternion is stored internally as (i, j, k, w)
// while the crate::new constructor takes the arguments as (w, i, j, k).
assert_eq!(*q.as_vector(), Vector4::new(2.0, 3.0, 4.0, 1.0));

pub fn norm(&self) -> N[src]

The norm of this quaternion.

Example

let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
assert_relative_eq!(q.norm(), 5.47722557, epsilon = 1.0e-6);

pub fn magnitude(&self) -> N[src]

A synonym for the norm of this quaternion.

Aka the length. This is the same as .norm()

Example

let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
assert_relative_eq!(q.magnitude(), 5.47722557, epsilon = 1.0e-6);

pub fn norm_squared(&self) -> N[src]

The squared norm of this quaternion.

Example

let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
assert_eq!(q.magnitude_squared(), 30.0);

pub fn magnitude_squared(&self) -> N[src]

A synonym for the squared norm of this quaternion.

Aka the squared length. This is the same as .norm_squared()

Example

let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
assert_eq!(q.magnitude_squared(), 30.0);

pub fn dot(&self, rhs: &Self) -> N[src]

The dot product of two quaternions.

Example

let q1 = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let q2 = Quaternion::new(5.0, 6.0, 7.0, 8.0);
assert_eq!(q1.dot(&q2), 70.0);

pub fn inner(&self, other: &Self) -> Self[src]

Calculates the inner product (also known as the dot product). See “Foundations of Game Engine Development, Volume 1: Mathematics” by Lengyel Formula 4.89.

Example

let a = Quaternion::new(0.0, 2.0, 3.0, 4.0);
let b = Quaternion::new(0.0, 5.0, 2.0, 1.0);
let expected = Quaternion::new(-20.0, 0.0, 0.0, 0.0);
let result = a.inner(&b);
assert_relative_eq!(expected, result, epsilon = 1.0e-5);

pub fn outer(&self, other: &Self) -> Self[src]

Calculates the outer product (also known as the wedge product). See “Foundations of Game Engine Development, Volume 1: Mathematics” by Lengyel Formula 4.89.

Example

let a = Quaternion::new(0.0, 2.0, 3.0, 4.0);
let b = Quaternion::new(0.0, 5.0, 2.0, 1.0);
let expected = Quaternion::new(0.0, -5.0, 18.0, -11.0);
let result = a.outer(&b);
assert_relative_eq!(expected, result, epsilon = 1.0e-5);

pub fn project(&self, other: &Self) -> Option<Self>[src]

Calculates the projection of self onto other (also known as the parallel). See “Foundations of Game Engine Development, Volume 1: Mathematics” by Lengyel Formula 4.94.

Example

let a = Quaternion::new(0.0, 2.0, 3.0, 4.0);
let b = Quaternion::new(0.0, 5.0, 2.0, 1.0);
let expected = Quaternion::new(0.0, 3.333333333333333, 1.3333333333333333, 0.6666666666666666);
let result = a.project(&b).unwrap();
assert_relative_eq!(expected, result, epsilon = 1.0e-5);

pub fn reject(&self, other: &Self) -> Option<Self>[src]

Calculates the rejection of self from other (also known as the perpendicular). See “Foundations of Game Engine Development, Volume 1: Mathematics” by Lengyel Formula 4.94.

Example

let a = Quaternion::new(0.0, 2.0, 3.0, 4.0);
let b = Quaternion::new(0.0, 5.0, 2.0, 1.0);
let expected = Quaternion::new(0.0, -1.3333333333333333, 1.6666666666666665, 3.3333333333333335);
let result = a.reject(&b).unwrap();
assert_relative_eq!(expected, result, epsilon = 1.0e-5);

pub fn polar_decomposition(&self) -> (N, N, Option<Unit<Vector3<N>>>)[src]

The polar decomposition of this quaternion.

Returns, from left to right: the quaternion norm, the half rotation angle, the rotation axis. If the rotation angle is zero, the rotation axis is set to None.

Example

let q = Quaternion::new(0.0, 5.0, 0.0, 0.0);
let (norm, half_ang, axis) = q.polar_decomposition();
assert_eq!(norm, 5.0);
assert_eq!(half_ang, f32::consts::FRAC_PI_2);
assert_eq!(axis, Some(Vector3::x_axis()));

pub fn ln(&self) -> Self[src]

Compute the natural logarithm of a quaternion.

Example

let q = Quaternion::new(2.0, 5.0, 0.0, 0.0);
assert_relative_eq!(q.ln(), Quaternion::new(1.683647, 1.190289, 0.0, 0.0), epsilon = 1.0e-6)

pub fn exp(&self) -> Self[src]

Compute the exponential of a quaternion.

Example

let q = Quaternion::new(1.683647, 1.190289, 0.0, 0.0);
assert_relative_eq!(q.exp(), Quaternion::new(2.0, 5.0, 0.0, 0.0), epsilon = 1.0e-5)

pub fn exp_eps(&self, eps: N) -> Self[src]

Compute the exponential of a quaternion. Returns the identity if the vector part of this quaternion has a norm smaller than eps.

Example

let q = Quaternion::new(1.683647, 1.190289, 0.0, 0.0);
assert_relative_eq!(q.exp_eps(1.0e-6), Quaternion::new(2.0, 5.0, 0.0, 0.0), epsilon = 1.0e-5);

// Singular case.
let q = Quaternion::new(0.0000001, 0.0, 0.0, 0.0);
assert_eq!(q.exp_eps(1.0e-6), Quaternion::identity());

pub fn powf(&self, n: N) -> Self[src]

Raise the quaternion to a given floating power.

Example

let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
assert_relative_eq!(q.powf(1.5), Quaternion::new( -6.2576659, 4.1549037, 6.2323556, 8.3098075), epsilon = 1.0e-6);

pub fn as_vector_mut(&mut self) -> &mut Vector4<N>[src]

Transforms this quaternion into its 4D vector form (Vector part, Scalar part).

Example

let mut q = Quaternion::identity();
*q.as_vector_mut() = Vector4::new(1.0, 2.0, 3.0, 4.0);
assert!(q.i == 1.0 && q.j == 2.0 && q.k == 3.0 && q.w == 4.0);

pub fn vector_mut(
    &mut self
) -> MatrixSliceMut<'_, N, U3, U1, RStride<N, U4, U1>, CStride<N, U4, U1>>
[src]

The mutable vector part (i, j, k) of this quaternion.

Example

let mut q = Quaternion::identity();
{
    let mut v = q.vector_mut();
    v[0] = 2.0;
    v[1] = 3.0;
    v[2] = 4.0;
}
assert!(q.i == 2.0 && q.j == 3.0 && q.k == 4.0 && q.w == 1.0);

pub fn conjugate_mut(&mut self)[src]

Replaces this quaternion by its conjugate.

Example

let mut q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
q.conjugate_mut();
assert!(q.i == -2.0 && q.j == -3.0 && q.k == -4.0 && q.w == 1.0);

pub fn try_inverse_mut(&mut self) -> bool[src]

Inverts this quaternion in-place if it is not zero.

Example

let mut q = Quaternion::new(1.0, 2.0, 3.0, 4.0);

assert!(q.try_inverse_mut());
assert_relative_eq!(q * Quaternion::new(1.0, 2.0, 3.0, 4.0), Quaternion::identity());

//Non-invertible case
let mut q = Quaternion::new(0.0, 0.0, 0.0, 0.0);
assert!(!q.try_inverse_mut());

pub fn normalize_mut(&mut self) -> N[src]

Normalizes this quaternion.

Example

let mut q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
q.normalize_mut();
assert_relative_eq!(q.norm(), 1.0);

pub fn squared(&self) -> Self[src]

Calculates square of a quaternion.

pub fn half(&self) -> Self[src]

Divides quaternion into two.

pub fn sqrt(&self) -> Self[src]

Calculates square root.

pub fn is_pure(&self) -> bool[src]

Check if the quaternion is pure.

pub fn pure(&self) -> Self[src]

Convert quaternion to pure quaternion.

pub fn left_div(&self, other: &Self) -> Option<Self>[src]

Left quaternionic division.

Calculates B-1 * A where A = self, B = other.

pub fn right_div(&self, other: &Self) -> Option<Self>[src]

Right quaternionic division.

Calculates A * B-1 where A = self, B = other.

Example

let a = Quaternion::new(0.0, 1.0, 2.0, 3.0);
let b = Quaternion::new(0.0, 5.0, 2.0, 1.0);
let result = a.right_div(&b).unwrap();
let expected = Quaternion::new(0.4, 0.13333333333333336, -0.4666666666666667, 0.26666666666666666);
assert_relative_eq!(expected, result, epsilon = 1.0e-7);

pub fn cos(&self) -> Self[src]

Calculates the quaternionic cosinus.

Example

let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let expected = Quaternion::new(58.93364616794395, -34.086183690465596, -51.1292755356984, -68.17236738093119);
let result = input.cos();
assert_relative_eq!(expected, result, epsilon = 1.0e-7);

pub fn acos(&self) -> Self[src]

Calculates the quaternionic arccosinus.

Example

let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let result = input.cos().acos();
assert_relative_eq!(input, result, epsilon = 1.0e-7);

pub fn sin(&self) -> Self[src]

Calculates the quaternionic sinus.

Example

let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let expected = Quaternion::new(91.78371578403467, 21.886486853029176, 32.82973027954377, 43.77297370605835);
let result = input.sin();
assert_relative_eq!(expected, result, epsilon = 1.0e-7);

pub fn asin(&self) -> Self[src]

Calculates the quaternionic arcsinus.

Example

let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let result = input.sin().asin();
assert_relative_eq!(input, result, epsilon = 1.0e-7);

pub fn tan(&self) -> Self[src]

Calculates the quaternionic tangent.

Example

let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let expected = Quaternion::new(0.00003821631725009489, 0.3713971716439371, 0.5570957574659058, 0.7427943432878743);
let result = input.tan();
assert_relative_eq!(expected, result, epsilon = 1.0e-7);

pub fn atan(&self) -> Self[src]

Calculates the quaternionic arctangent.

Example

let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let result = input.tan().atan();
assert_relative_eq!(input, result, epsilon = 1.0e-7);

pub fn sinh(&self) -> Self[src]

Calculates the hyperbolic quaternionic sinus.

Example

let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let expected = Quaternion::new(0.7323376060463428, -0.4482074499805421, -0.6723111749708133, -0.8964148999610843);
let result = input.sinh();
assert_relative_eq!(expected, result, epsilon = 1.0e-7);

pub fn asinh(&self) -> Self[src]

Calculates the hyperbolic quaternionic arcsinus.

Example

let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let expected = Quaternion::new(2.385889902585242, 0.514052600662788, 0.7710789009941821, 1.028105201325576);
let result = input.asinh();
assert_relative_eq!(expected, result, epsilon = 1.0e-7);

pub fn cosh(&self) -> Self[src]

Calculates the hyperbolic quaternionic cosinus.

Example

let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let expected = Quaternion::new(0.9615851176369566, -0.3413521745610167, -0.5120282618415251, -0.6827043491220334);
let result = input.cosh();
assert_relative_eq!(expected, result, epsilon = 1.0e-7);

pub fn acosh(&self) -> Self[src]

Calculates the hyperbolic quaternionic arccosinus.

Example

let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let expected = Quaternion::new(2.4014472020074007, 0.5162761016176176, 0.7744141524264264, 1.0325522032352352);
let result = input.acosh();
assert_relative_eq!(expected, result, epsilon = 1.0e-7);

pub fn tanh(&self) -> Self[src]

Calculates the hyperbolic quaternionic tangent.

Example

let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let expected = Quaternion::new(1.0248695360556623, -0.10229568178876419, -0.1534435226831464, -0.20459136357752844);
let result = input.tanh();
assert_relative_eq!(expected, result, epsilon = 1.0e-7);

pub fn atanh(&self) -> Self[src]

Calculates the hyperbolic quaternionic arctangent.

Example

let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let expected = Quaternion::new(0.03230293287000163, 0.5173453683196951, 0.7760180524795426, 1.0346907366393903);
let result = input.atanh();
assert_relative_eq!(expected, result, epsilon = 1.0e-7);

impl<N: RealField> Quaternion<N>[src]

pub fn from_vector(vector: Vector4<N>) -> Self[src]

👎 Deprecated:

Use ::from instead.

Creates a quaternion from a 4D vector. The quaternion scalar part corresponds to the w vector component.

pub fn new(w: N, i: N, j: N, k: N) -> Self[src]

Creates a new quaternion from its individual components. Note that the arguments order does not follow the storage order.

The storage order is [ i, j, k, w ] while the arguments for this functions are in the order (w, i, j, k).

Example

let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
assert!(q.i == 2.0 && q.j == 3.0 && q.k == 4.0 && q.w == 1.0);
assert_eq!(*q.as_vector(), Vector4::new(2.0, 3.0, 4.0, 1.0));

pub fn from_imag(vector: Vector3<N>) -> Self[src]

Constructs a pure quaternion.

pub fn from_parts<SB>(scalar: N, vector: Vector<N, U3, SB>) -> Self where
    SB: Storage<N, U3>, 
[src]

Creates a new quaternion from its scalar and vector parts. Note that the arguments order does not follow the storage order.

The storage order is [ vector, scalar ].

Example

let w = 1.0;
let ijk = Vector3::new(2.0, 3.0, 4.0);
let q = Quaternion::from_parts(w, ijk);
assert!(q.i == 2.0 && q.j == 3.0 && q.k == 4.0 && q.w == 1.0);
assert_eq!(*q.as_vector(), Vector4::new(2.0, 3.0, 4.0, 1.0));

pub fn from_real(r: N) -> Self[src]

Constructs a real quaternion.

pub fn from_polar_decomposition<SB>(
    scale: N,
    theta: N,
    axis: Unit<Vector<N, U3, SB>>
) -> Self where
    SB: Storage<N, U3>, 
[src]

Creates a new quaternion from its polar decomposition.

Note that axis is assumed to be a unit vector.

pub fn identity() -> Self[src]

The quaternion multiplicative identity.

Example

let q = Quaternion::identity();
let q2 = Quaternion::new(1.0, 2.0, 3.0, 4.0);

assert_eq!(q * q2, q2);
assert_eq!(q2 * q, q2);

Trait Implementations

impl<N: RealField + AbsDiffEq<Epsilon = N>> AbsDiffEq<Quaternion<N>> for Quaternion<N>[src]

type Epsilon = N

Used for specifying relative comparisons.

impl<N: RealField> AbstractGroup<Additive> for Quaternion<N>[src]

impl<N: RealField> AbstractGroupAbelian<Additive> for Quaternion<N>[src]

impl<N: RealField> AbstractLoop<Additive> for Quaternion<N>[src]

impl<N: RealField> AbstractMagma<Additive> for Quaternion<N>[src]

impl<N: RealField> AbstractMagma<Multiplicative> for Quaternion<N>[src]

impl<N: RealField> AbstractModule<Additive, Additive, Multiplicative> for Quaternion<N>[src]

type AbstractRing = N

The underlying scalar field.

impl<N: RealField> AbstractMonoid<Additive> for Quaternion<N>[src]

impl<N: RealField> AbstractMonoid<Multiplicative> for Quaternion<N>[src]

impl<N: RealField> AbstractQuasigroup<Additive> for Quaternion<N>[src]

impl<N: RealField> AbstractSemigroup<Additive> for Quaternion<N>[src]

impl<N: RealField> AbstractSemigroup<Multiplicative> for Quaternion<N>[src]

impl<'a, 'b, N: RealField> Add<&'b Quaternion<N>> for &'a Quaternion<N> where
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

type Output = Quaternion<N>

The resulting type after applying the + operator.

impl<'b, N: RealField> Add<&'b Quaternion<N>> for Quaternion<N> where
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

type Output = Quaternion<N>

The resulting type after applying the + operator.

impl<'a, N: RealField> Add<Quaternion<N>> for &'a Quaternion<N> where
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

type Output = Quaternion<N>

The resulting type after applying the + operator.

impl<N: RealField> Add<Quaternion<N>> for Quaternion<N> where
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

type Output = Quaternion<N>

The resulting type after applying the + operator.

impl<'b, N: RealField> AddAssign<&'b Quaternion<N>> for Quaternion<N> where
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

impl<N: RealField> AddAssign<Quaternion<N>> for Quaternion<N> where
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

impl<N: RealField> Clone for Quaternion<N>[src]

impl<N: RealField> Copy for Quaternion<N>[src]

impl<N: Debug + RealField> Debug for Quaternion<N>[src]

impl<N: RealField> Deref for Quaternion<N>[src]

type Target = IJKW<N>

The resulting type after dereferencing.

impl<N: RealField> DerefMut for Quaternion<N>[src]

impl<N: RealField + Display> Display for Quaternion<N>[src]

impl<N: RealField> Div<N> for Quaternion<N>[src]

type Output = Quaternion<N>

The resulting type after applying the / operator.

impl<'a, N: RealField> Div<N> for &'a Quaternion<N>[src]

type Output = Quaternion<N>

The resulting type after applying the / operator.

impl<N: RealField> DivAssign<N> for Quaternion<N>[src]

impl<N: RealField + Eq> Eq for Quaternion<N>[src]

impl<N: RealField> FiniteDimVectorSpace for Quaternion<N>[src]

impl<N: RealField> From<Matrix<N, U4, U1, <DefaultAllocator as Allocator<N, U4, U1>>::Buffer>> for Quaternion<N>[src]

impl<N: RealField + Hash> Hash for Quaternion<N>[src]

impl<N: RealField> Identity<Additive> for Quaternion<N>[src]

impl<N: RealField> Identity<Multiplicative> for Quaternion<N>[src]

impl<N: RealField> Index<usize> for Quaternion<N>[src]

type Output = N

The returned type after indexing.

impl<N: RealField> IndexMut<usize> for Quaternion<N>[src]

impl<N: RealField> Module for Quaternion<N>[src]

type Ring = N

The underlying scalar field.

impl<'a, 'b, N: RealField> Mul<&'b Quaternion<N>> for &'a Quaternion<N> where
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

type Output = Quaternion<N>

The resulting type after applying the * operator.

impl<'b, N: RealField> Mul<&'b Quaternion<N>> for Quaternion<N> where
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

type Output = Quaternion<N>

The resulting type after applying the * operator.

impl<N: RealField> Mul<N> for Quaternion<N>[src]

type Output = Quaternion<N>

The resulting type after applying the * operator.

impl<'a, N: RealField> Mul<N> for &'a Quaternion<N>[src]

type Output = Quaternion<N>

The resulting type after applying the * operator.

impl<'a, N: RealField> Mul<Quaternion<N>> for &'a Quaternion<N> where
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

type Output = Quaternion<N>

The resulting type after applying the * operator.

impl<N: RealField> Mul<Quaternion<N>> for Quaternion<N> where
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

type Output = Quaternion<N>

The resulting type after applying the * operator.

impl<'b, N: RealField> MulAssign<&'b Quaternion<N>> for Quaternion<N> where
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

impl<N: RealField> MulAssign<N> for Quaternion<N>[src]

impl<N: RealField> MulAssign<Quaternion<N>> for Quaternion<N> where
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

impl<N: RealField> Neg for Quaternion<N>[src]

type Output = Quaternion<N>

The resulting type after applying the - operator.

impl<'a, N: RealField> Neg for &'a Quaternion<N>[src]

type Output = Quaternion<N>

The resulting type after applying the - operator.

impl<N: RealField> NormedSpace for Quaternion<N>[src]

type RealField = N

The result of the norm (not necessarily the same same as the field used by this vector space).

type ComplexField = N

The field of this space must be this complex number.

impl<N: RealField> One for Quaternion<N>[src]

impl<N: RealField> PartialEq<Quaternion<N>> for Quaternion<N>[src]

impl<N: RealField + RelativeEq<Epsilon = N>> RelativeEq<Quaternion<N>> for Quaternion<N>[src]

impl<'a, 'b, N: RealField> Sub<&'b Quaternion<N>> for &'a Quaternion<N> where
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

type Output = Quaternion<N>

The resulting type after applying the - operator.

impl<'b, N: RealField> Sub<&'b Quaternion<N>> for Quaternion<N> where
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

type Output = Quaternion<N>

The resulting type after applying the - operator.

impl<'a, N: RealField> Sub<Quaternion<N>> for &'a Quaternion<N> where
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

type Output = Quaternion<N>

The resulting type after applying the - operator.

impl<N: RealField> Sub<Quaternion<N>> for Quaternion<N> where
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

type Output = Quaternion<N>

The resulting type after applying the - operator.

impl<'b, N: RealField> SubAssign<&'b Quaternion<N>> for Quaternion<N> where
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

impl<N: RealField> SubAssign<Quaternion<N>> for Quaternion<N> where
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

impl<N1, N2> SubsetOf<Quaternion<N2>> for Quaternion<N1> where
    N1: RealField,
    N2: RealField + SupersetOf<N1>, 
[src]

impl<N: RealField> TwoSidedInverse<Additive> for Quaternion<N>[src]

impl<N: RealField + UlpsEq<Epsilon = N>> UlpsEq<Quaternion<N>> for Quaternion<N>[src]

impl<N: RealField> VectorSpace for Quaternion<N>[src]

type Field = N

The underlying scalar field.

impl<N: RealField> Zero for Quaternion<N>[src]

Auto Trait Implementations

impl<N> RefUnwindSafe for Quaternion<N> where
    N: RefUnwindSafe

impl<N> Send for Quaternion<N>

impl<N> Sync for Quaternion<N>

impl<N> Unpin for Quaternion<N> where
    N: Unpin

impl<N> UnwindSafe for Quaternion<N> where
    N: UnwindSafe

Blanket Implementations

impl<T> AdditiveGroup for T where
    T: AbstractGroup<Additive> + AdditiveLoop + AdditiveMonoid
[src]

impl<T> AdditiveGroupAbelian for T where
    T: AbstractGroupAbelian<Additive> + AdditiveGroup
[src]

impl<T> AdditiveLoop for T where
    T: AbstractLoop<Additive> + ClosedNeg + AdditiveQuasigroup + Zero
[src]

impl<T> AdditiveMagma for T where
    T: AbstractMagma<Additive>, 
[src]

impl<T> AdditiveMonoid for T where
    T: AbstractMonoid<Additive> + AdditiveSemigroup + Zero
[src]

impl<T> AdditiveQuasigroup for T where
    T: AbstractQuasigroup<Additive> + ClosedSub<T> + AdditiveMagma
[src]

impl<T> AdditiveSemigroup for T where
    T: AbstractSemigroup<Additive> + ClosedAdd<T> + AdditiveMagma
[src]

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T, Right> ClosedAdd<Right> for T where
    T: Add<Right, Output = T> + AddAssign<Right>, 
[src]

impl<T, Right> ClosedDiv<Right> for T where
    T: Div<Right, Output = T> + DivAssign<Right>, 
[src]

impl<T, Right> ClosedMul<Right> for T where
    T: Mul<Right, Output = T> + MulAssign<Right>, 
[src]

impl<T> ClosedNeg for T where
    T: Neg<Output = T>, 
[src]

impl<T, Right> ClosedSub<Right> for T where
    T: Sub<Right, Output = T> + SubAssign<Right>, 
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> MultiplicativeMagma for T where
    T: AbstractMagma<Multiplicative>, 
[src]

impl<T> MultiplicativeMonoid for T where
    T: AbstractMonoid<Multiplicative> + MultiplicativeSemigroup + One
[src]

impl<T> MultiplicativeSemigroup for T where
    T: AbstractSemigroup<Multiplicative> + ClosedMul<T> + MultiplicativeMagma
[src]

impl<T> Same<T> for T[src]

type Output = T

Should always be Self

impl<SS, SP> SupersetOf<SS> for SP where
    SS: SubsetOf<SP>, 
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T> ToString for T where
    T: Display + ?Sized
[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.